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Abstract

The last recent years, internet of things (IoT) applications found their way
in many different domains and use cases. Key performance indicators (KPIs)
for these applications help organizations to monitor and evaluate how well
the applications achieve their main value objectives. To determine and de-
fine the correct KPIs in development phase can be a hard exercise for many
organizations, this work proposes a methodology to predict KPIs for IoT
applications in development phase. A cost model based on a 4-layer archi-
tecture for IoT applications, lists the different costs an organization should
take into account when developing an IoT application. Based on this first
cost model an incremental cost model is given that shows which incremen-
tal costs should be considered by organizations when they want to add new
KPIs after development phase. Based on this incremental cost model, orga-
nizations can estimate the economic impact of missing KPIs in development
phase. The second part of this work focuses on the methodology an devel-
opment of a KPI suggestion web tool. This tool offers the opportunity to
organizations to validate their KPIs in development phase and suggests other
KPIs that could be useful for an organization based on the non-functional
requirements of the application they want to develop. This web tool is used
first to suggest KPIs to an organization, the incremental cost analysis can
be used afterwards to take the decision whether or not to implement these
suggested KPIs. The last section of this work validates this methodology
against the Sundo use case of developing smart sunscreen dispensers. The
methodology provides the Sundo organization with 8 new KPIs they did not
think about, stating that both the web tool and incremental cost analysis
create an added value for developing new IoT applications.

Keywords: Internet of Things, IoT, Key Performance Indicators, KPI,
KPI suggestion, Incremental cost Analysis
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Methodology for KPI-selection and incremental cost
analysis for IoT-applications in development phase

Victor Desmet

Supervisors: prof. dr. ir. Sofie Verbrugge, prof. dr. ir. Didier Colle, dr. ir. Frederic Vannieuwenborg, Timo Latruwe

Abstract—The last recent years, internet of things (IoT) applica-
tions found their way in many different domains and use cases.
Key performance indicators (KPIs) for these applications help
organizations to monitor and evaluate how well the applications
achieve their main value objectives. To determine correct KPIs
can be a hard exercise for many organizations. This work
proposes a methodology to predict KPIs for IoT applications in
development phase. A cost model based on a 4-layer architecture
for IoT applications, lists the different costs an organization
should take into account when developing an IoT application.
Based on this generic cost model an incremental cost model
is given that shows which costs should be taken into account
when a KPI must be implemented after development phase.
Organizations can estimate the economic impact of missing KPIs
in development phase based on this model. The second part of
this work focuses on the methodology an development of a KPI
suggestion web tool. This tool suggests KPIs that could be useful
for an organization based on the non-functional requirements
of the application they want to develop. If an organization
doubts whether or not to implement a suggested KPI, they
can use the incremental cost model to determine possible cost
drivers for the KPI after development phase.The last section
of this work validates this methodology against the Sundo use
case of developing smart sunscreen dispensers. The methodology
provides the Sundo organization with 8 new KPIs they did not
think about, stating that both the web tool and incremental
cost analysis create an added value for developing new IoT
applications.

Index Terms—Internet of Things, IoT, Key Performance Indica-
tors, KPI, KPI suggestion, Incremental cost Analysis

I. INTRODUCTION

The Internet of Things (IoT) opens up a whole range of new
services and applications in many domains. Examples are:
control and automation of lighting and heating (Smart Home),
blood pressure and heart rate monitoring enabling remote
healthcare (mHealth), vibrations monitoring of a machine part
in order to perform preventive maintenance (smart industry),
etc. The value of these IoT services often lays in the fact that
the data produced by the sensors allows to take appropriate
actions.
Nowadays, data analytics are often used to get insights and
discover correlations between captured data points. In order to
be able to use these techniques, one must have (access to) data.
Since data is a product that results from most IoT applications,
it is often not yet available in a development phase. In addition,
data analytics can only generate insights based on what is
measured by the IoT-device, eventually supplemented with
external data. Thus, aspects not measured by the IoT-device
cannot be included in the analysis.

Therefore, to maximize the expected impact of the IoT appli-
cation (e.g. increased operational efficiency) whilst minimizing
the costs for post-deployment data analysis and potential
refactoring costs (e.g. adding a sensor in an existing and
already deployed solution), one needs to have a clear view
on what to measure and how to monitor certain aspects of the
IoT-application at an early stage of the IoT-development.
In other words, being able to define the Key Performance
Indicators (KPIs), and their metrics of the IoT-application
and system before actual development and deployment, affects
both the impact the IoT-system can have and the effort to get
insights in these KPIs. The question is how and to what extent
we can incorporate this step in the IoT-development phase?
This work starts with a literature study about what KPIs for
IoT applications are and how they are determined and defined
nowadays. Based on this literature study, both a cost model
for the development of IoT applications as an incremental cost
model for adding KPIs to an IoT application are given. A
methodology and implementation of a KPI suggestion web
tool allows organizations to validate their KPIs and suggests
new, useful KPIs the organization may not have thought of
at first. A validation of the methodology is given based on
a use case concerning smart sunscreen dispensers. Finally,
a conclusion about the chosen methodology is formulated
together with some future improvements for the suggested
methodology.

II. LITERATURE STUDY

To create an incremental cost structure and describe a method-
ology for KPI suggestions a literature study was done. The
4-layer architecture from the work of Niyato et al. [1] is
used as starting point to list the cost components of an IoT
application. This architecture is adapted to the architecture
given in figure 1. Using this architecture, the costs for every
layer are determined and listed. The work of De Cock [2] is
used to start the development of the incremental cost models.
The work of Lucero [3] gives a lot of insights in the platform
layer for the cost model. Whereas Leonard [4] describes how
sensor prices are falling and what the impact of this trend
means for the cost of IoT applications.
Interviews with experts in the IoT-domain reinforced the need
for a KPI suggestion tool. These experts were IoT responsibles
in big companies such as Deloitte, SAP and Daikin. Other
interviews with people who deal with KPIs in their job
gave some insights into how KPIs are defined. These people
include staff of Imec, Rombit, Televic rail, Philips and the
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retail factory. In total more then 15 interviews with people
using KPIs were taken. In his book about Key performance
indicators Parmenter [5] talks about how winning KPIs should
be defined and proposes a six-stage implementation plan to
discover and implement useful KPIs. The work of Fukuda et
al. [6] describes the use of a KPI net to link KPIs together.
KPILibrary [7] provides a lot of KPIs to fill this KPI net.
Willaert et al. [8] defines a methodology for performance
measurement that supports a process-oriented vision on an
organization. This work uses the 4-layer architecture discussed

Figure 1. The 4 layer architecture used as basis for the incremental cost
model

above and creates an incremental cost model that allows to
identify the costs of adding KPIs after the development phase
of an application. Based on the literature study done, KPIs
are nowadays mostly based on gut feeling. For this, the work
also defines a methodology to suggest useful KPIs for an IoT
applications based on the input of non-functional requirements
of this application.

III. INCREMENTAL COST ANALYSIS

Starting from the 4-layer architecture as described in section
II and given in figure 1, this section provides an incremental
cost model for every layer. In the remainder of this section
we differentiate two different types of costs. The first one is
the added cost. This is the cost that is added when a new KPI
needs to be implemented but that could not have been avoided
by adding the KPI in development phase. An example is the
cost of a single sensor. It doesn’t matter whether the sensor
is bought in development phase or after deployment, the price
is the same (or very comparable) in both cases. The second
type of cost is the incremental cost, this is the cost that is
introduced by adding a KPI to an already deployed application
but that would have been avoided by implementing the KPI in
development phase. In the cost models given below, the added
cost is displayed as green components while the incremental
cost is displayed as red components. White components are
components where the cost is not affected by adding a new
KPI

A. The Perception Layer

The perception layer is the layer responsible for sensing
the real world. It includes sensors, actuators, processors,
firmware. . .. All hardware, software and firmware components
of the perception layer are aggregated under the name of
smart objects. These smart objects need to be adapted when
KPIs are added after development phase. To add new KPIs,

sensors are required for the measurement of these KPIs.
The casing of the application may also need to be adopted
when an extra sensor needs to fit in. Next to the hardware
costs, the certification costs and redeployment costs bring an
incremental cost when KPIs need to be implemented after
development phase. Figure 2 gives the incremental cost model
for the perception layer. The model differentiates the cost to
buy or rent smart objects and the cost to make these smart
objects. Buying or renting mostly gives a lower startup cost
for organizations. Making smart objects, on the other hand,
provides much more customised smart objects. Next to that,
an import cost may need to be paid when sensors are bought
abroad. The production and maintenance cost are not affected
by implementing a new KPI after development phase. The
need for redeployment after the implementation of a new
KPI is called the redeployment cost in figure 2 and adds an
incremental cost to the application.

Figure 2. The incremental cost model for the perception layer

B. The Communication Layer

The communication layer provides communication between
the perception layer and the platform layer. This means it
takes care of the data provided by the smart objects and sends
this data to a server where it can be processed and/or stored.
An organization can choose to either use a private or public
network to provide communication for its application. Both
options require subscription to a (mostly paid) network. When
adding KPIs to the application, more frequently or larger (in
terms of bytes) communication may be needed which brings
an added cost. Figure 3 gives an overview of the different cost
components of the communication layer.

C. The Platform Layer

The platform layer contains the data storage and data process-
ing for the data received from the perception layer through
the communication layer. The platform layer stores data from
and metadata about the application. Device management of
the different gateways enables the application to send uplink
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Figure 3. The incremental cost model for the communication layer

packets to the different nodes it wants to communicate with.
Adding new KPIs to the application will produce an added cost
in the data storage components of the platform layer. Figure
4 shows the cost components of the platform layer.

Figure 4. The incremental cost model for the platform layer

D. The Application Layer

The application layer is, as the name mentions, very specific
for each IoT application. The layer is a connection of IoT
technologies and sector professional technologies. Its main
goal is to share the information produced by the smart objects
and secure the information safety. It provides specific services
to the end users through analyzed and processed data. As this
layer contains mostly software, its main cost components are
development, deployment, maintenance and expansion costs.
Adding new KPIs to the application clearly belongs to this
expansion cost. The nature of software learns that expanding
an application almost always requires a larger effort than
implementing the required feature in development phase. For
this, the expansion component is displayed as an incremental
cost in figure 5.

IV. KPI SUGGESTION TOOL

This section handles the methodology for the KPI suggestion
tool. This tool takes user input in the form of non-functional
requirements. A non-functional requirements is a requirement
that specifies criteria that can be used to judge the operation
of a system, rather than specific behaviors. Examples of such
requirements are: security, availability, maintainability. Based
on this non-functional requirements the tool suggests useful

Figure 5. The incremental cost model for the application layer

KPIs for an IoT application. The tool should be used by
organizations who want to discover new KPIs they did not
think about at first. This in order to avoid the incremental
costs described in section III. The architectural design of the
tool is given in figure 6. The methodology consists of 6 main
parts, each explained in detail in the sections below.

Figure 6. The main components of the KPI suggestion tool

A. User input front-end

The first part of the tool is the user input, situated in the
lower left corner of figure 6. Here, the user estimates the non-
functional requirements of his application on a likert scale
(from 1 to 7). The choice was made to focus on non-functional
requirements as these are more general compared to functional
requirements. The non-functional requirements are sent to the
correlation matrix where a score for each KPI is determined
(see section IV-C).

B. KPI net

The second part of the application is the KPI net. This KPI
net is a relational database where all data is stored. It contains
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each KPI, the data sources for every KPI, the non-functional
requirements described above and the correlations between
these requirements and the KPIs. In total 13 requirements and
46 KPIs are stored in the KPI net. The back-end application
(see section IV-D) provides endpoints to add KPIs and require-
ments as future improvements.

C. Correlation matrix

The correlation matrix provides a mapping between the non-
functional requirements of the application and the KPIs stored
in the KPI net. The KPI net contains correlation coefficients
(CC) that determine how important each non-functional re-
quirements is for each KPI. The correlation uses this score to
transform the ratings of the non-functional requirements into
a score for each KPI in the KPI net using equation 1.

Sk =
∑

r∈Ω

C(r, k) ∗ I(r) (1)

With

Sk : Score for KPI k
Ω : Collection of all requirements
C(r, k) : CC between requirement r and KPI k
I(r) : Score for requirement r as rated by the user

The KPIs with the best score will be marked as the list of top
KPIs for the application. The scores for every KPI, computed
as in equation 1 are sent to the back-end application.

D. Back-end application

The data from the KPI net and the output of the correlation
matrix are both sent to the back-end api which combines
both parts to find a set of suggested KPIs. First, the back-end
selects a list of top KPIs based on the scores received from
the correlation matrix. The back-end now searches for other
suggested KPIs which have a lot of common data sources
with this list of top KPIs. The correlation algorithm (see
section IV-E) is responsible to find the KPIs with the lowest
cost. These suggested KPIs are considered the so called ”low
hanging fruit” KPIs for the organization. This means the
suggested KPIs are the ones that can be implemented with
minimal effort for the organization. The back-end returns these
top KPIs together with the suggested KPIs to the front-end
user output. The back-end also provides API endpoints to add
KPIs, requirements and correlations to the KPI net.

E. Correlation Algorithm

The correlation algorithm determines a set of suggested KPIs
based on the list of top KPIs. It uses a cost function for this
task. At the moment this cost function is the amount of data
sources. Using this cost function together with the score as
calculated in equation 1, the correlation algorithm determines
a relative cost score for each KPI using equation 2.

Rc(k) =
a(1 + c(k))

b ∗ Sk)
(2)

With

Rc(k) : The relative cost of KPI k
c(k) : The cost of the KPI
Sk : The score of KPI k based on the requirements
a : The weight coefficient for the cost
b : The weight coefficient for the score

The weight coefficients used in the above equation enable the
possibility to give more importance to the cost of the KPI.
Notice the formula uses 1 + c(k) in the numerator in order to
always retrieve a cost larger than zero. If this would not be
used, total irrelevant KPIs that do not need extra data sources
will always be suggested. The KPIs with the lowest relative
cost are selected as suggested KPIs.

F. User output front-end

The result of the back-end, this is the top KPIs and the
suggested ”low hanging fruit” KPIs are sent to the user as
output of the tool. The user can now select which KPIs he
wants to implement. Based on this selection the user can
choose to recalculate the suggested KPIs. The selected KPIs
will now serve as the list of top KPIs and the back-end will
select new ”low hanging fruit” KPIs based on this selection.
This is an iterative process that continues until the user is
satisfied with the current suggested KPIs.

V. VALIDATION

This section validates the above described methodology. The
application used for validation is the Sundo use case. Sundo
is a startup company that provides smart sunscreen dispensers
to cities. Accommodated with sun information like the actual
UV-index and temperature the dispensers offers inhabitants the
possibility to protect against the sun. With a user friendly on-
line dashboard, the city can monitor the consumption of each
dispenser in a simple way. In addition, automatic notifications
about dispensers that are almost empty offer the possibility to
plan optimised routes to refill the empty dispensers.
As Sundo develops a new application it is an ideal use case to
test the KPI suggestion tool. To test the tool, the importance
of every non-functional requirement was estimated. Also,all
KPIs have are already taken into account are listed. The KPI
suggestion tool processes this input and provides the suggested
KPIs it has found as output. Afterwards a comparison between
the initial KPIs and the results from the KPI suggestion tool
was done. This validation was done both with and without the
option to iterate on the returned KPIs by the tool (described in
section IV-F). Sundo needed 3 iterations for the suggestion tool
to reach a stable solution. In this solution, 8 new KPIs were
found that were considered worth investigating. This states the
above described methodology is indeed capable of suggesting
useful KPIs for an IoT application.

VI. CONCLUSION

This work describes a new methodology to discover potentially
interesting KPIs for IoT use cases. it starts by listing the cost
components for an IoT-application. Based on these cost models
the required effort to add a new KPI to the IoT-application is
estimated. The cost models differentiate between added cost
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and the incremental cost. Adding a KPI to the application
will in some cost components bring an extra cost. When
this cost is the same as when the KPI is implemented in
development phase, we call this the added cost. This cost is
inevitable and is specific to the facts that KPIs are dynamic.
It is however possible that costs, due to adding KPIs to the
application, could have been avoided by implementing these
KPIs in development phase. This is called the incremental
cost and allows a company to get an impression which effort
it needs to deliver to add a new KPI to the application.
The incremental cost models given in this work are based on a
4 layer architecture for IoT applications. The first layer is the
perception layer which includes the data sources needed for
the application. This perception layer communicates with the
platform layer through a communication layer. The platform
layer is, among other tasks, responsible for preprocessing and
storing the data provided from the smart objects layer. At last
the application layer presents the stored data to the end user
in such a way it creates a useful application. The cost models
should be used together with the companies knowledge about
the application. The models give a first impression on which
cost components will create an incremental cost when KPIs are
added. The models don’t say much about what the magnitude
of this cost is, as this dependent on multiple variables. The
number of devices, cost of the needed data sources, and type
of application are only some variable factors that determine
the size of the cost for adding new KPIs. The first part of this
thesis has as main purpose to offer the end user an overview
on which type of costs he will face when missing a KPI in
development phase.
As the incremental cost analysis gives an overview of the dif-
ferent cost components for adding KPIs to an IoT-application,
the second part offers the end user a KPI suggestion tool to
predict which KPIs are useful for his application. The tool
starts with the non-functional requirements of the application
and processes this input together with a prestored KPI net to
suggest the user with useful KPIs.
When combined, the incremental cost analysis and KPI sug-
gestion tool have a great value for companies. The suggestion
tool offers an additional resource to help companies to deter-
mine KPIs the may not have thought of before. This way the
chance of missing KPIs in development phase decreases for
a company. When the suggestion tool suggests KPIs but the
company is not sure whether or not this KPI will be useful in
the future, it can use the incremental cost analysis to compare
the cost of adding the KPI in the development phase of the
application to the cost of adding the KPI in a later stage.

VII. FUTURE WORK

The above described incremental cost models list the main
incremental and added cost components for adding KPIs to
an already deployed IoT-application. The models indicate the
different cost components of an IoT application and illustrate
which costs to expect when adding KPIs to these applications.
The models however, do not give any clues about the magni-
tude of these costs is or which the largest cost drivers are. With
the current model, an organization can identify these costs but

needs to estimate the size of this cost for itself. As a first
improvement the different costs and their magnitude should
be listed and described. This way, organizations can, instead
of only identifying the cost based on these models, also predict
very precise how much missing a KPI for an IoT application
will cost and which are the main cost drivers.

This work also provides a first methodology and suggestion
tool to predict useful KPIs. In future work the KPI net should
be expanded and more literature and investigation should
be done into how KPIs correlate with the non-functional
requirements for an application. When more data sets of KPIs
can be found, the distances between the KPIs in the KPI net
could be expanded. At the moment, the only distance between
KPIs is their common data sources. This metric could be
combined with the correlation found by investigating data sets
from two or more KPIs.

A feedback loop, that allows the suggestion tool to learn and
improve from previous selected KPIs based on non-functional
requirements input could be a first step to predict KPIs using
a machine learning approach. The correlation coefficients
between KPIs and requirements are now based on literature. In
the future it would be beneficial to provide a learning system
that changes these correlations based on selected KPIs by
the organizations. The correlation score between a KPI and
a requirement should, whenever the KPI is selected as a KPI
to be implemented by the organization, be increased everytime
the input score for this requirement is rather high or decreased
when the input score is rather low. Such an implementation
needs profound research to make sure the scores don’t change
too drastically based on a single user’s choice of KPIs and can
be reset when needed.
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Chapter 1
Introduction

1.1 Situation of this master dissertation

The last recent years, a new wave in the era of computing found its way to the
spotlights. Internet of Things (IoT) emerged as a concept about 20 years ago
and is now making headlines all around the world. In the internet of things
(IoT) paradigm, people are surrounded with everyday devices connected to
the internet. These devices take many forms. Going from smart thermostats
over connected doorbells to connected healthcare applications. IoT opens up
a whole range of new services and applications in many domains. The growth
of IoT devices is spectacular. From 15.46 billion connected devices in 2015
to 26.66 billion nowadays [8] (including smartphones, connected cars. . .).
Predictions say this number will increase up to 75.44 billion connected devices
in 2025 [8]. Worldwide spending on IoT devices is also on the rise, with
IDC’s Worldwide Semiannual Internet of Things Spending Guide predicting
that global spending in IoT will leap from over $ 800 billion in 2017 to $
1.4 trillion by 2021 [9]. IotAnalytics [10] estimates the number of pure IoT
applications (connected devices without smartphones, laptops, tablets etc.)
around 7 billion nowadays and expects this number to grow to 21 billion by
2025. The different types of IoT devices cover a very wide range. Control and
automation of lighting and heating (Smart Home), blood pressure and heart
rate monitoring enabling remote healthcare (mHealth), vibration monitoring
in a machine in order to perform preventive maintenance (smart industry)
are only some applications for this very quickly expanding paradigm.

1
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Key Performance Indicators (KPIs) are the critical (key) indicators of
success towards an intended result. KPIs provide a focus for strategic and
operational improvement, create an analytical basis for decision making and
help focus attention on what matters most. They represent a set of mea-
sures focusing on the most critical aspects for an organization both in the
present and in the future. Well chosen KPIs provide objective evidence of
progress towards achieving a desired result, give insights for better decision
making and offer a comparison in the degree of performance change over
time. Dependent on the type of project, importance of different functional
and non-functional requirements and domain of the project, different KPIs
must be formulated.

1.2 Problem Description

The gain from IoT often lays in the fact that the data produced by the sensors
on these devices allows to take appropriate actions. Based on well chosen
Key Performance Indicators, data analytics are used to discover correlations
between captured data points. Since data is a product that results from
most IoT applications, it is often not yet available in a development phase. In
addition, data analytics can only generate insights based on what is measured
by the IoT device, possibly supplemented with external data. Thus, aspects
not measured by the IoT device cannot be included in the analysis. Therefore,
to maximize the expected impact of the IoT application (e.g. increased
operational efficiency) whilst minimizing the costs for post-deployment data
analysis and potential refactoring costs (e.g. adding a sensor in an existing
and already deployed solution), one needs to have a clear view on what to
measure and how to monitor certain aspects of the IoT application at an
early stage of the IoT development.

Figure 1.1 gives an schematic overview of the ideal steps in the creation of
an (IoT) application. The most left side of the figure represents the ideation
phase were the idea is born. After the ideation phase,ideally, a Techno-
economic analysis (TEA) follows. In this TEA, an organization takes several
decisions towards an IoT solution. The first question to ask is whether or not
to make the application an IoT application. For this, there must be obvious
benefits of choosing for an IoT solution. If not, the overhead produced by
creating a ”smart” application may not be worth the benefits. When the
question about whether or not to create an IoT solution is solved, an orga-
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Figure 1.1: Ideal schematic overview of the creation of an (IOT) application

nization must define its KPIs to monitor the performance of the application.
When all KPIs are defined, a cost structure of the application allows for an
economic evaluation of the application. When this evaluation is positive, the
TEA can be refined and the prototyping step starts. This thesis focuses on
this techno-economic phase. After the TEA, a company typically creates a
prototype of the product and starts to work on a pilot after which the final
product is scaled to the needed amount. Whilst the phases after the TEA
also possess great challenges, this is not the focus of this thesis. Nevertheless,
a complete overview is given because bad chosen KPIs are carried along all
other phases. Figure 1.2 illustrates the problem of choosing bad or missing
KPIs. This problem emerges most of the time after the application is already
deployed and scaled. This way huge economic efforts can be needed when
one decides to define other KPIs than the ones primarily chosen in the TEA
phase.

As described above, the main challenges IoT applications are facing nowa-
days concerning KPIs are the following:

• KPIs are determined and defined based on gut feeling nowadays.

• Data to evaluate the KPI is not accessible in development phase.

• Adding a KPI to an IoT application may require a huge economic effort
after development phase.
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Figure 1.2: Lifecycle of how KPIs are used [1]

1.3 Goal

The first goal of this thesis is to gain insights into the different costs in
the development and deployment of an IoT application. The creation of a
cost structure of an IoT application enables the possibility to understand
how KPIs can affect the cost of an Internet of Things application. More
specifically this work offers cost models that enable a comparison between
the cost of adding KPIs in development phase and the cost of adding these
KPIs in a later stage. The cost models also helps organizations to make a
decision about the gains of using IoT technologies for the application. While
the measurement of a KPI brings an added cost at first, this cost may later
be justified by the gains of the measurement in later stages of the application.

Based on the above described cost structure a methodology for a KPI sug-
gestion tool will be given. Via this tool, organizations describe the domain-
aspects or settings of their IoT application. The tool then provides KPIs
and metrics as source of inspiration and cross-checking the earlier formu-
lated KPIs. Users see the added value of adding a KPI in the development of
the application compared to the cost it will cause when they decide to ignore
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the KPI for now and implement it in a later stage. Every KPI needs (a num-
ber of) data sources in order to measure this KPI. The KPI suggestion tool
uses the number of common data sources between KPIs as a distance metric.
The KPIs that are most relevant to the application based on the input of the
organization and that have the closest distance to the most important KPIs
for this input are suggested by the KPI suggestion tool.

1.4 Structure of this master dissertation

In what follows, a short overview of what the reader can expect in the re-
mainder of this work is given.

Chapter 2 gives a literature study about IoT and KPIs and how these
concepts influence our everyday life and the structure of organizations that
work with them. Furthermore, a basic architecture for IoT applications is
given. A literature study about different cost components for IoT applica-
tions gives some first insights in how an incremental cost analysis can be
developed. At last, literature about how KPIs are suggested nowadays and
models to predict KPIs for a new IoT application are given. This helps to
develop a new methodology and KPI suggestion tool to predict KPIs for an
organization.

Chapter 3 starts with the incremental cost analysis. The different cost
components of an IoT application are given for every layer of the 4-layer
architecture as described in chapter 2. These cost models help determine the
incremental cost of adding KPIs in a later stage and help to compare the cost
between adding KPIs in development phase and adding the same KPIs in a
later phase. The second part of this chapter focuses on the KPI suggestion
tool by explaining its methodology and architecture.

Chapter 4 starts by describing the Sundo use case. Sundo is a startup
company that delivers a service to cities and inhabitants. Using smart sun-
screen dispensers they allow cities to provide sunscreen for their inhabitants.
This use case allows to validate the KPI suggestion tool and check if the tool
proposes useful KPIs for this organization.

At last, chapter 5 provides a conclusion and wrap up of this work. Some
important insights and future improvements are also listed.
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Chapter 2
Literature study

2.1 What is IoT?

The Internet of Things (IoT) is the interconnecting of physical devices (also
referred to as ”smart” or ”connected” devices). The basic idea of this
paradigm is the pervasive presence around us as a variety of things or objects
which are able to interact and cooperate with each other to reach common
goals [11]. These things or objects are found in many different shapes. They
are the smartphones we use daily, smart thermostats, connected doorbells,
basically a broad range of sensors, actuators, Radio-Frequency IDentifica-
tion (RFID) tags etc. Unique Identifiers (UIDs) provide these devices with
the ability to be defined in an unambiguous way. These UIDs offer the
smart devices the ability to transfer data over a network without requiring
human-to-human or human-to-computer interactions [12]. The extensive set
of applications for IoT devices is often divided into consumer, commercial,
industrial and infrastructure spaces [12]. Notice some of these spaces may
contain some overlapping devices/applications.

The consumer space covers the devices connected to the internet that
are created for consumer use. These include connected vehicles, home au-
tomation, wearable technology, connected health and appliances with remote
monitoring abilities [13]. Home automation includes lighting, heating and
air conditioning, media and security systems. Examples of such systems are
Amazon echo [14], Google Home [15] or Apple’s Homekit [16]. Wearable

7
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technology devices can be incorporated into clothing or worn on the body
as implants or accessories. Activity trackers are an example of such kind of
devices.

The commercial applications include medical and healthcare applications,
also referred to as Internet of Medical Things (IoMT). Smart beds have found
their implementation into some hospitals, detecting if they are occupied or if
a patient is attempting to get up. Next to IoMT the commercial space for IoT
application includes devices used for transportation, and vehicle-to-anything
(V2X) communication which is the first step to autonomous driving and road
infrastructure. Devices used to monitor and control the mechanical, electri-
cal and electronic systems, used in various types of buildings and building
automation systems, can help in building and home automation applications.

IoT applications offer great help in industrial sectors. Manifacturing has
made huge improvements using IoT solutions. IoT even has such big influ-
ence on the industrial sector it has led to the fourth industrial revolution [17].
This new industry is called industry 4.0 or smart industry. An overview of
the revolutions to industry 4.0 is given in figure 2.1
Machines augmented with wireless connectivity and sensors are connected to
systems that can visualise the entire production line and make decisions on
their own. The results of this approach are very promising. Applications in-
clude machines which can predict failures and trigger maintenance processes
autonomously or self-organized logistics which react to unexpected changes
in production. Smart industry allows better and faster optimisation for pro-
cesses within an organization. Letting machines communicate directly to one
another also reduces lead times, increases efficiency and reduces the risk on
errors.

The last application space where IoT applications create an added value
are infrastructure applications. Several planned or ongoing deployments of
IoT applications enable better management of cities and systems. Smart
cities use IoT applications to collect data and gain insights in this data. This
way enabling a more efficient energy management, monitoring and managing
of traffic streams, environmental monitoring etc.

As stated above IoT is ubiquitous nowaydays. The use cases for IoT
applications are almost endless and IoT has found its way into a very broad
range of domains. The number of IoT applications will only grow in the
future. Increasing technology such as 5G and the global adoption of Ipv6
will only encourage this growth making IoT even more indispensable in our
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Figure 2.1: The four phases of the industrial revolution [2]

everyday life.

2.2 What are KPIs?

Key performance Indicators (KPIs) are measurable values that allow a com-
pany to value how effectively it is achieving its key business objectives. Many
organizations use KPIs at multiple levels to evaluate their success at reaching
targets. High-level KPIs may focus on the overall performance of the busi-
ness, while low-level KPIs may focus on processes in departments such as
sales, marketing, HR, support and others [18]. Well defined and meaningful
KPIs are of great value to any organization. KPIs provide the opportunity
to check whether or not the company is achieving what it wants to achieve.

To formulate KPIs, every company should start with stating what the
organizational objects are, how they plan on achieving them and who can act
on this information. This iterative process involves feedback from analysts,
department heads, consultants and managers. Every KPI should be very
clear and well defined in order to be useful. A lot of question lists exist online
to help creating well defined KPIs. Some of the most important questions
that lead to good KPIs are given below:

• What is your desired outcome?

• Why does this outcome matter?
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• How are you going to measure progress?

• How can you influence the outcome?

• Who is responsible for the business outcome?

• How will you know you’ve achieved your outcome?

• How often will you review progress towards the outcome?

As stated by Neely et al. [6] good performance measures should follow the
recommendations as stated in table 2.2

Questions and guidelines such as described above help organizations to
define their KPIs in a proper way. But the problem of how to know if every
possible KPI for the organization is found remains unsolved. This work
proposes an incremental cost analysis by which organizations can estimate
the cost of missing KPIs in development phase and thus having to implement
these KPIs after the deployment of the application. The second part of this
work focuses on a KPI suggestion tool to suggest KPIs the organization may
not have thought of before. This way reducing the risk of missing KPIs and
avoiding the economic effort this entails.

2.3 Cost analysis literature

This section handles the literature study about the cost analysis of IoT appli-
cations. To develop an incremental cost model, all costs of an IoT application
must be known and described. Based on this literature study, an overview
of all costs for an IoT application can be given which serves as the basis for
the incremental cost analysis described in section 3.1

2.3.1 Architecture of IOT-applications

The architecture of an IoT application is the starting point to define dif-
ferent cost models for these applications. Ghulak et al. [19] gives a first
architectural design for IoT applications. In their work, they compare two-
and three-tier IoT architectures. The two-tier applications consist of an IoT
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Recommendation
1 Performance measures should be derived from strategy
2 Performance measures should be simple to understand
3 Performance measures should provide timely and accurate feedback
4 Performance measures should be based on quantities that can be influ-

enced, or controlled, by the user alone or in co-operation with others
5 Performance measures should reflect the “business process” – i.e. both

the supplier and customer should be involved in the definition of the
measure

6 Performance measures should relate to specific goals (targets)
7 Performance measures should be relevant
8 Performance measures should be part of a closed management loop
9 Performance measures should be clearly defined
10 Performance measures should have visual impact
11 Performance measures should focus on improvement
12 Performance measures should be consistent (in that they maintain

their significance as time goes by)
13 Performance measures should provide fast feedback
14 Performance measures should have an explicit purpose
15 Performance measures should be based on an explicitly defined for-

mula and source of data
16 Performance measures should employ ratios rather than absolute

numbers
17 Performance measures should use data which are automatically col-

lected as part of a process whenever possible
18 Performance measures should be reported in a simple consistent for-

mat
19 Performance measures should be based on trends rather than snap-

shots
20 Performance measures should provide information
21 Performance measures should be precise – be exact about what is

being measured
22 Performance measures should be objective – not based on opinion

Table 2.2: Recommendation for good performance measures as stated by
Neely [6]
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Figure 2.2: The 4-layer architecture used in the remainder of this work

device tier (the connected devices) and a server tier. In a three layer archi-
tecture a middle gateway (GW) device tier connects both tiers. Ghulak also
proposes a classification of hardware features which give us a first direction
to develop a cost structure for IoT-applications. Niyato et al. [20] uses this
architecture and split the server tier into two seperated tiers: data storage
tier and data processing tier resulting in a four-tier architecture. Munjin et
al. [21] introduces marketplaces for IoT-applications by looking at analogies
with the marketplaces for smartphone applications. Munjin presents a re-
view of IoT application platforms in order to show the relationship between
the software applications and the IoT cloud based services.

To talk about the architecture in an unambiguous way, figure 2.2 shows
the 4-layer structure used in the remainder of this work based on the above
described literature. As security is gaining importance in IoT applications
[22] sometimes a five layer architecture is proposed. This fifth layer is called
the security layer and is present in all other layers of the 4-layer architecture.
Nowadays security is mostly implemented in every layer separately. Yet,
it is possible to provide end-to-end security from the perception layer to
the application layer as suggested by PubNub [23]. This way much more
secure applications can be build. Figure 2.3 gives this 5-layer architecture.
However, at the moment the 4-layer architecture is mostly used. For this,
the cost analysis provided in section 3.1 works with this 4-layer architecture
as provided in figure 2.2

2.3.2 Cost structure of IOT-applications

This section provides a more in depth exploration about the costs of ev-
ery component based on the above described 4-layer architecture for IoT-
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Figure 2.3: The 5-layer architecture of an IOT-application

applications. Section 3.1 uses the results found in the literature study from
this section to build cost models for each layer of this 4-layer architecture.
Li et al. [24] models a service composition of IoT into a finite state machine
which can be transformed into a markov decision proces. This markov deci-
sion proces is then extended with a cost structure that gives a first insight
in how such a cost structure represents different quality attributes. Com-
bined with the work of Yang et al. [25], which describes how IoT service
composition is driven by user requirements, these two papers can give a first
attempt for an incremental cost model based on service requirements of the
IoT application. The work of Lucero [26] gives more insights in the impact
of IoT applications and analyzes the role that IoT platforms play in IoT-
applications. The work provides more insights in the important aspects of
an IoT platform and helps develop a cost structure for the platform layer as
described above. Several cloud solutions concerning storage, such as google
cloud engine [27], AWS [28] and Microsoft Azure [29], were consulted to get
better insights in the cost of the platform layer for IoT-applications. These
cost drivers are also listed in the work of Niyato et al. [30]. In his work, Niy-
ato describes how service providers should address data management in IoT
through using smart data pricing. The work proposes a new pricing scheme
for IoT service providers. Niyato [30] proposes different pricing schemes for
different user needs. These schemes help to determine the cost drivers in our
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Figure 2.4: The average price of an IOT-sensor is falling [3]

cost model. Concerning the perception layer (which includes the IoT sensors)
Leonard [31] states that the average sensor prices are falling. Figure 2.4 shows
the trend of the average sensor price. Because of this trend a first assumption
is the perception layer will not be a major cost driver in our cost model of
IoT-applications. Communication cost mainly defines the cost of the edge
layer (also called communication layer later on). A lot of protocols exist for
IoT communication, all with their owns prices and specifications. Dhillon et
al. [32] discusses the need for a wide-area machine-to-machine (M2M) Wire-
less network. More relevant for this thesis, Dhillon also provides an overview
of the current existing communication standards for IoT-applications.

Based on the above found literature, a first impression of the different
cost components for each layer in the 4-layer architecture is obtained.

2.4 KPI suggestion tool literature

This section handles the literature study about the KPI suggestion tool.
First a state of the art analysis shows how KPI suggestion is done nowadays
for IoT-applications. In section 2.4.2 literature about how the current state
of the art can be improved is combined. Based on this section, chapter 3
presents a new methodology for KPI suggestion in development phase.
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2.4.1 State of the art analysis

The cost analysis described above shows the importance of defining useful
KPIs and gives more insights in the cost of an IoT system. Based on the
literature found, missing a KPI can have a huge impact on the cost of an
application. To suggest useful KPIs, a methodology for mapping KPIs onto
the application requirements is needed. For this purpose, a literature study
was done. Besides of this literature study, multiple interviews with IoT
experts within organisations were taken. The questionnaire used for these
interviews can be found in appendix A. An interview with the team of Sofie
Van Hoecke (professor at UGent) gave more insights in the need for a KPI
suggestion tool. Her team faces the problems related to missing sensors in
applications almost daily. They perform data analysis on big data but are
often confronted with the fact that certain necessary sensors and/or data
points are not present to make a correct prediction for the KPIs objective.
Interviews with experts in the IoT-domain reinforced the need for a KPI
suggestion tool. These experts were IoT responsibles in big companies such
as Deloitte, SAP and Daikin. Other interviews with people who deal with
KPIs in their job gave some insights into how KPIs are defined. These people
include staff of Imec, Rombit, Televic rail and the retail factory. In total, 17
interviews with people using KPIs were taken. The following remarks were
the most important to vindicate the need for a KPI suggestion tool:

• Nowadays, KPIs are defined most of the time based on gut feeling.

• In a lot of cases and applications, data (sources) appears to be missing
to measure the wanted KPIs

• The costs of adding data sources to an already deployed application
turned out to be quite large

A lot of literature exists about how KPIs can be defined in certain do-
mains. However, as IoT is evolving rapidly the last recent years, there is
less literature about how KPIs should be defined for IoT-specific applica-
tions. A lot of tools and methodologies to determine KPIs based on the
output of other KPIs and/or measured data points already exists. Lei Shi
et al. [33] proposes a methodology for KPI identification of KPIs based on
Knowledge capturing. Based on measured data points they extract KPIs.
As this thesis focuses on KPI definition in development phase this data will
most of the time not be available, but an extraction based on data of other
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similar applications could lead to some KPIs for the new application based
on this method. Parmenter [7] talks in his book about Key performance
indicators about how winning KPIs should be defined and proposes a six-
stage implementation plan to discover useful KPIs. His six-step procedure
(given in table 2.4) provides guidances towards defining KPIs for organiza-
tions and how organizations should implement these KPIs in their structure.
Until now several other guidelines and best practices about implementing
KPIs on to IoT applications have been described. Hwang et al. [34] uses
business process modelling to define and select useful KPIs for IoT appli-
cations. He proposes a KPI evaluation tool that can change the dynamic
structure of business processes. Rakar et al. [35] proposes a methodology for
KPI definitions in production process management. Wang pang et al. [36]
develops a KPI evaluation system to manage business processes. While Marr
et al. [37] gives a review of the existing approaches for measuring knowledge
based assets. Marr introduces the knowledge asset map which integrates
existing approaches in order to achieve comprehensiveness. The problem of
misleading KPIs due to little domain knowledge beforehand is described by
Roubtsova et al. [38] The same kind of problem description is stated in the
introduction. Roubtsova [38] presents a way to validate the effectiveness of
KPIs before implementation. The results of this paper can be very important
for this thesis as it will allow to verify whether the suggestion tool returns
sensible KPIs. Bauer et al. [39] suggests a way to reduce a network existing
of a lot of KPIs to a handful set of useful KPIs. They use the correlation
between the KPIs to detect which KPIs are linked together and which are
further away from each other. Bauer proposes a validation method to check
whether the chosen KPIs are relevant for the business processes of organi-
zations before implementation. Wilkinson [40] shows in a case study how
useful KPIs can be found between all KPIs measured in his paper. These
techniques can be useful to filter the best KPIs for an application out of
a long list of different KPIs. Although a lot of best practices exist, a KPI
suggestion tool to suggest KPIs in development phase, as is the goal of this
thesis, is not available today [41]. Peral et al. [42] presents a new approach to
drive data mining techniques to obtain specific KPIs for business objectives
in a semi-automated way. Using data mining techniques on a data warehouse
(DW), useful KPIs are extracted.
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1 Getting the CEO and senior
management committed to
the change

The senior management team must be
committed to developing and driving
through the organization KPIs and any
balanced scorecard that includes them.
In addition,timing is everything.

2 Up-skill in-house resources
to manage the KPI project

The success of a KPI project rests with
trained home-grown staff who have been
reassigned so that they are full time on
the project.

3 Leading and selling the
change

All major project implementations are
deeply affected by the success or failure
in leading and selling the change.

4 Finding your organization’s
operational critical success
factors

Critical success factors (CSFs) are op-
erational issues or aspects that need to
be done well day-in and day-out by the
staff in the organization.

5 Determining measures that
will work in your organiza-
tion

Many performance measures are cre-
ated from a flawed process. Numer-
ous methodologies,including the bal-
anced scorecard, appear to simply say
the measures are a by-product of the
exercise. Frequently the task of find-
ing measures is carried out at the last
minute by staff who do not have a clue
about what is involved in finding a mea-
sure that will create the appropriate be-
havioral response.

6 Get the measures to drive
performance

In order to get measures to drive per-
formance,a reporting framework needs
to be developed at all levels within the
organization.

Table 2.4: The six step implementation plan as proposed by Parmenter [7]
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2.4.2 KPI suggestion tool

A lot of techniques found in literature for KPI definition in other domains
could be modified to map onto IoT applications nevertheless. Peral [42] pro-
posed a new methodology for extracting relevant KPIs based on the business
strategy model of a particular enterprise/activity. A six stage procedure,
which exists of 2 business model strategy phases, 2 KPI definition phases
and 2 extraction phases, allows an organization to identify new KPIs based
on current implemented KPIs. KPIs are organised in a DW where they are
modelled based on dependencies such as same data sources. As the goal of
the tool this thesis will deliver, is to suggest KPIs before the application is
developed, there are no current implemented KPIs. Yet, the idea rose that
if we can find enough KPIs from other similar applications the methodology
could be relevant for the KPI suggestion tool. KPILibrary [43] contains a
lot of useful KPIs with their metrics and formulas currently implemented in
applications all over the world. So does the work of Kang et al. [44]. To
create the tool, the work of Karlson et al. [45] was used to see how KPI dash-
boards are created nowadays and where attention is paid to. Samsonowa et
al. [46] proposed a way to use clusters to find similarities in performance mea-
surements in different companies. Using this method, similar KPIs of other
applications can be found for a new application. Fukuda et al. [47] proposes
a way to analyze and design a KPI net based on data mining on existing
KPIs. This KPI net, in Fukuda’s work is a graph structure with weighted
correlations between KPIs on the edges and KPIs as vertices. Based on the
work in this paper, a KPI net can be constructed based on previous KPIs of
other organizations. This KPI net serves as input for KPI suggestions for new
applications. In the paper of Fukuda, correlations between KPIs are tracked
to indicate how strong KPIs are linked. Willaert et al. [48] defines a method-
ology for performance measurement that supports a process-oriented vision
on an organization. His methodology combines a bottom-up approach, where
operational measurements are being collected on the level of the end-to-end
customer focused processes, and a top down approach, in which process goals
are cascaded down to the company’s core processes. Abe et al. [49] suggests
the use of a KPI-network to keep correlated KPIs that can later be used to
define useful KPIs for an organization. In their work, Stricker et al. [4] used
the fact that several links exist between KPIs. In his work, Stricker defines
high level KPIs and searches for correlations between KPIs to construct a
KPI network to maximize the potential of a simulated assembly line. The
idea of this network is adopted in this work and expanded to multiple do-
mains for IoT applications. Figure 2.5 gives an idea how Stricker stored the
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Figure 2.5: The correlated KPIs as used in the work of Stricker [4], this idea
is used as basis for the correlations in the KPI net

correlations between KPIs . In this figure the ’+’ sign stands for directly
proportional correlations while the ’-’ sign stands for inversely proportional
correlations. This thesis combines the ideas from these last two mentioned
papers to construct a KPI network which will serve as input for the algo-
rithm to suggest the most relevant KPIs. Although Stricker uses the KPI
network only to predict machine downtime, his proposed method could serve
in a far more general way. As Bauer [39] proposes a way to extract the best
set of KPIs from a long list of KPIs, his techniques can be applied on the
KPI network.
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Chapter 3
Methodology

To create a KPI suggestion tool that allows organizations to predict useful
KPIs, the problem must be broken down into several smaller steps. The first
part of this chapter focuses on the incremental cost analysis for IoT appli-
cations. This cost analysis lists all cost of an IoT application based on the
4-layer architecture as described in chapter 2 and figure 2.2. Organizations
who want to develop a new IoT application can use this model to discover
the costs they need to take into account. Next to that, they can estimate the
cost of missing KPIs for their application. The analysis provides a model to
estimate the cost of adding KPIs to an application in development phase and
compare this cost with the cost to implement the same KPI in a later phase.
This cost increases each phase. Adding the KPI in development phase clearly
requires a less economic effort compared to adding the same KPI after the
protoyping phase. While adding the KPI after deployment and scaling phase
requires an even greater effort.

The second part of this chapter focuses on the KPI suggestion tool. This
tool takes user input about the application and provides useful KPIs together
with their data sources. This way organizations discover ”low hanging fruit”
KPIs that are less obvious to implement in development phase. The tool can
help organizations to prevent the problem of missing KPIs in development
phase. It suggests KPIs the organization may not have thought of at first.

In the last section of this chapter, a guidance is provided about how
both the incremental cost analysis model and the KPI suggestion tool can

21
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be used by an organization to know which KPIs he wants to implement
in his application in development phase. Combining both methods enables
organizations to fully understand which KPIs they may need for their IoT
application. Based on the incremental cost analysis, they can predict whether
or not adding the KPI in a later stage will require a large economic effort.

3.1 Incremental Cost Analysis

3.1.1 Introduction

This section provides information about,and the creation of, an incremental
cost analysis for IoT applications. This incremental cost analysis needs a
first model to get an overview of all costs of an IoT application. To list all
cost components of an IoT application, the 4-layer architecture of figure 2.2
is used as a starting point. The cost components for every layer are now
investigated separately. The cost models in the cost structure section are
mainly based on the work of De Cock [50]. The section on the incremental
models investigates the costs of adding a data source to an IoT application
in a later stage than the development phase. While the models provided in
the following sections help to identify these costs, it is the responsibility of
the organization to estimate how large the cost will be when a KPI needs to
be implemented after the development phase. To help identify the different
cost components for expanding the IoT application, the incremental analysis
compares the cost between adding a KPI (with given needed data sources to
measure this KPI) in development phase and adding the same KPI to the
application in a later phase.

3.1.2 Cost Structure

Figure 2.2 gives a first overview of the architecture of an IoT application.
A cost breakdown structure (CBS) based on this architecture gives the cost
for every layer separately and looks for common costs between layers. Two
categories of costs are distinguished. The first category consists of the costs
needed for the design and development of the application. This includes
buying/making sensors, creating a database, creating a platform to monitor
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Figure 3.1: A schematic overview of the 4-layer architecture

the IoT application. . . These are the Capital Expenditures (CAPEX) and are
needed at the start of the development. The second category, the Operational
Expenditures (OPEX), includes the costs of maintaining the IoT application.
These costs mainly depend on the scale on which the IoT application is used.
Both CAPEX and OPEX have an impact on the incremental cost analysis
this master dissertation provides. Section 3.1.3 gives an overview on how
these two categories affect the incremental cost model for an IoT application.

To give an overview of the CBS of an IoT application, the architecture
from figure 2.2 is used as a starting point. Figure 3.1 gives a more schematic
overview of this architecture. In the following sections the different cost
drivers for each layer are determined and displayed.

3.1.2.1 Perception Layer

The perception layer allows the interaction with the outside world. This
layer contains the sensors and other data providers that are used to measure
KPIs and application-specific data. This work combines all these sensors,
actuators, data providers etc. and aggregates them under the term: smart
objects. Definition 3.1.1 gives the definition of smart objects. The perception
layer can contain one or several of these smart objects depending on the
application.

Definition 3.1.1. Smart Object: A smart object is an object that en-
hances the interaction with not only people but also with other smart ob-
jects. These are products, assets and other things embedded with processors,
sensors, software and connectivity that allow data to be exchanged between
the product and its environment, manufacturer, operator/user, and other
products and systems. Connectivity also enables some capabilities of the
product to exist outside the physical device, in what is known as the prod-
uct cloud. The data collected from these products can then be analyzed
to inform decision-making, enable operational efficiencies and continuously
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improve the performance of the product. [51]

Definition 3.1.1 allows us to define the different cost components of the
perception layer in more detail. As definition 3.1.1 states the smart object
is the combination of hardware, software, and connectivity. Figure 3.2 gives
an overview of the different components of these smart objects based on the
work of Klubnikin [52] and interviews with people responsible for the creation
of IoT applications in companies like Delaware, Philips and SAP. Figure 3.2
consists of four main branches. These branches each bring their own costs
and are discussed in the remainder of this section.

The first branch is the import cost. When smart objects, or components
of smart objects, are bought abroad (A lot of companies tend to buy many
sensors in China due to economic reasons), it is possible an import cost needs
to be paid. This import cost belongs to the CAPEX of the application as it
must be paid only in the development phase of the application.

The second cost branch is the cost of the smart object itself. An organi-
zation can either choose to buy, rent or make the smart object. Buying or
renting smart objects leads to a smaller startup cost. The only cost that is
made is the cost of the smart object itself as sold/rented by the manufac-
turer. An organization does not need to worry about any technicalities of the
smart object, only how to send the data to their platform layer. When the
smart object is bought this cost belongs to the CAPEX. In case of renting,
the cost is classified under OPEX. When an organization cares a lot about
the KPIs for his IoT application, they will almost always prefer to make the
smart object themselves instead of buying or renting. As in this case, the
smart object is much more customizable. Notice that the ”make” branch
does not mean the organization needs to create the smart object themselves,
they can also choose to let another manufacturer create the smart object for
them. In both cases, some main cost components are introduced.

The cost of making smart objects is divided in two main categories. The
first category is the cost needed to buy all the equipment of the smart object.
This includes Sensors, hardware, a printed circuit board (PCB), Microcon-
troller (MCU), the casing of the smart object, the energy source and the
actuators to react upon events. As most of these costs only have to be made
once (per smart object) they all belong to the CAPEX of the application.
The second category is given on the right hand side of the ”make” branch in
figure 3.2. These are the costs for assemblage and certification of the hard-



3.1. INCREMENTAL COST ANALYSIS 25

Figure 3.2: Overview of the components of the smart objects layer

ware, implementing and testing of the firmware. These costs also belong to
the CAPEX of the IoT application as they are typical costs at the startup
phase for any application.

The deployment cost includes the installation and roll-out cost for the
smart object. The deployment cost belongs to the CAPEX of the application.
When the application needs to be deployed more than once depending on
the customer needs, the deployment cost can also belong to the OPEX of the
application.

The last cost is the maintenance cost. This is the cost to keep the appli-
cation up and running. The maintenance cost includes repairing components
of the smart object, upgrading the firmware on the smart objects. . . The
maintenance cost clearly belongs to the OPEX of the application.
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Figure 3.3: Overview of the components of the connectivity layer

3.1.2.2 Communication layer

The communication layer provides communication between the perception
layer and the platform layer. This means it takes care of the data provided
by the smart objects and sends this data to a server where it can be processed
and/or stored. Figure 3.3 presents the cost components in the communication
layer. Communication for IoT applications is possible using either public
or private networks. With public networks, the end user does not have to
provide gateways (GW) and installation of the network. On the other hand,
public networks may not have coverage everywhere the user wants to install
his IoT application. When this is the case, a private network is needed. The
costs for having a private network are listed in figure 3.3. In this model the
private network branch also includes a subscription cost. This is because
even when an organization provides its own network coverage, it will still
need a network operator to send its messages. Some open networks like
TheThingsNetwork [53] exist for free but others are on paid subscription.
The subscription and maintenance components belong to the OPEX of the
application. The GW and installation components belong to the CAPEX.
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Figure 3.4: Overview of the components of the platform layer

3.1.2.3 Platform layer

The platform layer contains the data storage and data processing for the
data received from the perception layer through the communication layer.
The platform layer stores data from and metadata about the application.
Device management of the different gateways enables the application to send
uplink packets to the different nodes it wants to communicate with. A lot of
big players offer off the shelf IoT platforms. Examples are Google Cloud, Mi-
crosoft Azure and Amazon Web Service (AWS). Figure 3.4 gives the different
cost components of the platform layer. As these off the shelf platforms offer
a pay-as-you-come service the cost components belong to the OPEX of the
application. An organization can also choose to develop its own IoT platform
which handles the different components of the platform layer. In this case an
extra development cost should be added to the CAPEX of the application.
As this is very rare, this cost component is neglected in figure 3.4. Notice
that an organization is not forced to use one single platform. Although not
recommended due to economic reasons - most platforms offer discount for
IoT packages of services - an organization can choose to use different services
from different platforms.

3.1.2.4 Application layer

The application layer is, as the name mentions, very specific for each end
application. The layer is a connection of IoT technologies and sector profes-
sional technologies. Its key issue is to share the information produced by the
smart objects and secure the information safety. It provides specific services
to the end users through analyzed and processed data. For KPI definition
and monitoring the application layer will mostly be some kind of dashboard
where all KPIs are listed. Although this layer is very use case dependent,
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Figure 3.5: Overview of the components of the application layer

some main cost components can be discovered. Figure 3.5 lists these differ-
ent components. The main cost component for the application layer is the
development of the application. The organization can choose to either make
the application themselves or to buy the software for the application from an
IT company. In both cases the development cost of the application belongs
to the CAPEX of the application. A second cost is the deployment of the
application. For this a server (in the cloud or on a local machine) is needed
if the application must be used by multiple users which is almost always the
case. In the deployment component in figure 3.5 an extra deployment cost
component is given. This is the cost for actually deploying the application.
On application level this usually means using a git repository and a jenkins
server to automate the deployment. As with the deployment cost in the per-
ception layer, the deployment cost belongs to both the CAPEX and to the
OPEX of the application. A third cost component of the application layer
is the maintenance of the application. This includes bug fixing and code
refactoring. As this cost must only be made after deployment (otherwise it
is still counted as development cost) it is in the OPEX of the application. A
last cost component which is actually not very connected to IoT-applications
but more with software in general is expanding the application by adding
new features. Yet, this cost is given in figure 3.5 for completeness. This
expansion cost clearly belongs to the OPEX of the application.

3.1.3 Incremental Cost Structure

While the previous section listed the different costs for an IoT application this
section focuses on the incremental cost analysis for adding KPIs to an already
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deployed application. Figure 3.6 gives an overview of all costs described in
the previous section. For each layer the costs introduced by adding a KPI to
the IoT application are now identified. This section differentiates two types
of costs for adding a KPI to the application.

• Added cost: The added cost is defined as the cost for an organization,
introduced by adding a new KPI to the application after it is deployed.
These are costs that one needs to make no matter in what stage they
decide to add the KPI. So the cost stays the same for the decision of
both adding the KPI in development phase or implementing the KPI
in a later stage. In the visualisation of the models in the following
sections, this cost is represented in green.

• Incremental cost: The incremental cost on the other hand is the cost
that could have been avoided by implementing the KPI in the devel-
opment phase of the application. This means adding a KPI after the
deployment introduces a cost whereas this cost would have been avoided
by adding the KPI in development phase. This cost is represented in
red in the visualisation of the models in the following sections.

The following sections discuss if there is an added or incremental cost for
each component in each layer.

3.1.3.1 Perception layer

The first layer to examine is the perception layer. Implementing new KPIs
introduces new data sources to measure these KPIs (given the new KPI
can not be measured with the data sources already present in the perception
layer). It may be possible to add a new data source from external sources such
as an external API. This may not always be possible however and the need of
adding an extra sensor may be present. When this is the case the smart object
must be adapted. When the smart object is bought from a manufacturer this
may introduce a problem as these are mostly not customizable. For this, a
new smart object must be bought. This is clearly an incremental cost as the
organization did now buy two smart objects compared to one object when
the KPI was implemented in development phase. When the application is
made by the organization, an added cost must be taken into account in the
sensor cost component. It is important to realize this added cost would be
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Figure 3.6: The total cost structure for an IOT-application as described in
section 3.1
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the same cost when the organization decided to implement the data source
in development phase. Next to the added sensor cost the PCB needs to
be redesigned. This cost is an incremental cost as the design of the PCB
does now take place twice. Adding the KPI and thus the data source in
development phase of the application would have avoided this cost. Most of
the times the MCU for the smart object does not need to change when adding
a new data source to the IoT application so this will not bring an incremental
cost. When an extra data source is needed, the casing of the smart object
may need to change. This certainly is an incremental cost as the design of
the casing does now need to be done twice. The decision to redesign the case
depends whether or not the data source must be integrated in the case (for
example a light sensor) or if the data source does not fit the current casing.
In these cases, the casing requires a redesign. The casing component is red
in the model in figure 3.7 as an organization needs to think for itself if the
casing needs to be adapted. When the new data source requires a lot of
energy, the energy source may need to change. This leads to an incremental
cost as the old energy source is now unnecessary. Of course it is possible that
the energy source can be reused in other smart objects but that is for the
organization to decide and out of the scope of this work.

Next to the cost for the hardware, an extra data source will also entail
extra costs in the production process of smart objects. Adding a physical
component to the smart object creates an incremental cost for the certifica-
tion as this means the smart object must achieve a new certification. This
way the certification cost, which is mostly a rather expensive cost, must be
paid twice. The test cost brings an added cost because integration tests with
the different other data sources should be taken into account. This cost how-
ever, when designed well, is the same as the test cost for adding the data
source in the development phase. Adding a new data source that can per-
fectly integrate with the already existing smart object will create an added
cost for both the assemblage and implementation cost. Note this remark only
counts when the application is well designed from the start with attention
to extensibility. The last cost component that changes, is the deployment
cost for the application. When the existing smart objects do not need to
be upgraded, for example when the new smart object with the extra data
sources is just a newer version of the old smart object, this does not provide
an extra cost. When this is not the case and every existing smart object of
the application needs to implement the new data source, this needs to be
done twice and thus ensures an incremental cost. When this last scenario
is the case, an extra incremental logistic cost must be taken into account to
retrieve all smart objects and upgrade them. In figure 3.7 this is called the
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Figure 3.7: Added and incremental cost for smart objects

redeployment cost and will usually be even larger than the first deployment
cost.
Figure 3.7 gives a visualisation of the above described added and incremental
costs.

3.1.3.2 Communication layer

More data sources will cause more communication. For the communication
layer this means the subscription with our network provider may change. A
new KPI may need more bits to send its relevant data or may need to send
more frequently in order to properly measure the KPI. An example of this last
requirement could be when the end user decides to implement a heartbeat
in his application to measure the uptime as a KPI. This is an added cost
as almost all providers allow to simply upgrade the subscription to the new
needs of the organization. The gateway, installation and maintenance cost
will not be affected by adding a new KPI to the application.
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Figure 3.8: Added and incremental cost for communication layer

3.1.3.3 Platform layer

The platform layer is affected by the addition of a new KPI in several ways.
First of all the database design needs to be rethought. When the database
is properly designed in development phase this should not be a huge effort.
This means it introduces an added and no incremental cost because it will not
require a much larger effort compared to when the KPI was implemented in
development phase. When the data from the new KPIs must be preprocessed
this is also an added cost for the cost model. The device management cost
component will not change when new KPIs are added to the application.
So won’t the connectivity and normalisation component. As the additional
resources are very use case specific, there is no telling if this component will
change by adding new KPIs over time. It is therefore neglected in this work.
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Figure 3.9: Added and incremental cost for the platform layer

Figure 3.10: Added and incremental cost for the application layer

3.1.3.4 Application layer

Adding KPIs to the application will add an extra cost to visualize the new
data sources in the application layer. This cost will be an incremental cost
compared to the cost for implementing the KPI in development phase. This
incremental cost is classified in the expansion component of the cost model.
The reason this is an incremental and not an added cost is due to the nature
of software development. Extending software requires a much bigger effort
than implementing the new feature in development phase [54].

3.1.3.5 Final model

Figure 3.11 presents the final combined model for the four layers as described
above. Organizations can now use this cost model to validate if it is worth
adding extra data sources in development phase. Doing this increases the
risk these data sources will never be used. Yet, the benefits that when they
are used and thus the incremental costs are avoided, can be very high. The
green components in the model indicate an extra cost when adding KPIs.
This cost is the same as the cost compared to when the KPI would have
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been included in development phase. The green components are meant to
inform organizations what costs they should take into account when adding
new KPIs. The red components on the other hand, stand for an incremental
cost. This means missing a KPI will have a bad impact on the costs of these
components. The size of the impact depends on the scale on which the ap-
plication is deployed, the task of the application, the domain the application
is operating in etc. It is the task of the organization to estimate this impact
based on its application knowledge. The white components are cost compo-
nents that should not change when adding KPIs to the IoT application. This
does not mean these components can never change if a KPI is added, they are
just very unlikely to change. This final model should inform organizations
about the cost of creating an IoT application and what the consequences are
when they miss a KPI in an IoT application after deployment. Section 3.2
provides a methodology and a KPI suggestion tool to suggest useful KPIs to
an end user. The outcome of this tool is used together with this incremental
cost model to make a more considered decision whether or not to implement
the KPI in development phase.

3.1.4 Future Improvements

The above described models list the main incremental and added cost com-
ponents of an IoT-application for adding KPIs. The models indicate the
different cost components of an IoT application and illustrate which costs to
expect when adding KPIs to these applications. The models however, do not
give any clues about how large these costs are or which components are the
largest cost drivers. With the current model, an organization can identify
these costs but needs to estimate the size of this cost for itself. As a first
improvement the different costs and their magnitude should be listed and
described. This way organizations can, instead of only identifying the cost
based on these models, also predict very precise how much missing a KPI for
an IoT application will cost and which are the main cost drivers.

In addition, the costs for adding KPIs to an IoT application will not
have the same magnitude in every phase of the creation process (displayed
in figure 1.1). As shortly mentioned in the introduction of this section, the
cost for adding a KPI in the prototyping phase will normally be much lower
compared to the cost of adding the same KPI after the scaling phase. Future
work could give an idea about what the magnitude of these costs are for
every phase of the creation process.
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Figure 3.11: Final incremental cost model for all layers
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3.2 KPI Suggestion Tool

3.2.1 Introduction

This section handles the methodology for the KPI suggestion tool. This tool
takes user input in the form of non-functional requirements. Non-functional
requirements are defined as requirements that specifie criteria that can be
used to judge the operation of a system, rather than specific behaviors. Ex-
amples are: security, availability, stability. . . While functional requirements
are determined by the business rules and domain of the application, an ex-
ample of a functional requirement for an application would be: An admin-
istrator should be able to create new customers. Notice in the remainder of
this work whenever the term requirements is used, these are non-functional
requirements. Except of course when it is specifically stated that functional
requirements are meant.

Based on the non-functional requirements of an IoT application, the tool
suggests useful KPIs to an end user. The tool should be used by organiza-
tions who want to discover new KPIs they did not think about at first. This
in order to avoid the incremental costs described in section 3.1. The archi-
tectural design of the tool is given in figure 3.12. The methodology consists
of 6 main parts. Detailed information about each part is given in the next
sections.

The first part of the tool is the user input in the lower left corner of
the figure. Here, the user estimates the non-functional requirements of his
application on a likert scale (a rating scale). These non-functional require-
ments are then processed using a correlation matrix. This correlation matrix
consists of predefined correlation scores between each requirement-KPI pair
(see section 3.2.2.3). The correlation matrix gives a mapping between the
non-functional requirements and the KPIs and tells how important each re-
quirement is for each KPI. When combined, the user input (in the form of
non-functional requirements) and the correlation matrix provide a first score
for each KPI. This way the application discovers a list of top suggested KPIs
for the application.

The second part of the suggestion tool is the KPI net. This KPI net is a
relational database where all data is stored. It contains each KPI, the data
sources for every KPI, the non-functional requirements described above and
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Figure 3.12: Schematic overview of methodology for the KPI suggestion tool

the correlations between these requirements and the KPIs.

The KPI net and the first list of top suggested KPIs (as described above)
are both sent to the back-end API. Based on these list of top KPIs, the
back-end searches for other suggested KPIs which have a lot of common
data sources with the list of top KPIs. These other suggested KPIs are
called the ”low hanging fruit” KPIs as they require minimal effort by the
end user to implement. The back-end also provides API endpoints to add
KPIs, requirements and correlations to the KPI net.

The result of the back-end, this is the list of top KPIs and the suggested
low hanging fruit KPIs, is sent to the user as output of the tool. The user
can now select which KPIs he wants to implement. Based on this selection
the back-end selects new suggested KPIs. This is an iterative process that
continues until the user is satisfied with the current suggested KPIs.
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Figure 3.13: A typical user story to use the KPI suggestion tool

Figure 3.13 gives a typical user story of how the application is used.
The user rates his non-functional requirements first. These non-functional
features are rated on a likert scale from 1 to 7 and define the importance
of every non-functional requirement present in the KPI net. When the re-
quirements are rated, the correlation matrix will select the best KPIs based
on this input. The algorithm returns these KPIs together with the needed
data sources for every KPI. This data goes through the correlation algorithm
(present in the back-end of the application). This algorithm uses the data
stored in the KPI net to select other KPIs with the lowest cost based on
the list of top KPIs. The user can then look at this result and select which
KPIs and thus data sources he will use after which the correlation algorithm
checks for new discovered lowest cost KPIs. This last iteration is repeated
till the user decides he has the best set of KPIs.

In the following sections, the implementation and working of each of the
different parts of the application is described in more detail. In the end some
ideas for future improvements of the KPI suggestion tool are listed.
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3.2.2 Components

3.2.2.1 User input front-end

The first part of the web tool takes non-functional requirements about the
application as user input. It tries to find the most useful KPIs based on this
input. Because it is impossible to ask the user to rate all functional require-
ments, the choice was made to focus on non-functional requirements. These
are more general and more easy to predict for the end user. All non-functional
requirements are stored in the KPI net (see section 3.2.2.2). A description for
each requirement is also provided in the front-end user input page. This way,
there is no doubt about the definition of a non-functional requirement. In
total the application contains 15 non-functional features (listed in appendix
B). The API of the suggestion tool provides an endpoint that allows to add
more non-functional requirements for future improvements (see appendix D).
Figure 3.14 gives an example of what the front-end user input web page looks
like. The end user rates every non-functional requirement for his application
on a likert scale from 1 to 7. During the development of the application the
idea rose that it could be useful to provide meaningful labels instead of just
the numbers 1 to 7. These meaningful labels could provide more context
to the end users of the tool. For security for example, such labels could go
from basic security to bank level security in multiple levels. Another example
could be the availability that is usually expressed in number of nines. The
scale then goes from 99% availability to 99.999999% availability. In the end,
this was not adopted because not all applications will use the same metrics
to define the importance of a requirement. An organization may for example
value the measurement of availability very important (score 7 on the likert
scale) while it only needs 99% availability for its application. This is not a
contradiction and is hard to determine when working with meaningful labels.
Every user gets a fixed number of points to distribute among the given fea-
tures. Users can only submit their input when this number of points is greater
or equal than zero, this to force the user to think about which requirements
are really important for his application.

The front-end application asks end users to rate a fixed set of non-
functional requirements on a likert scale from 1 to 7. This to indicate how
important each non-functional requirement is for the application. These
scores are processed later on in the correlation matrix (section 3.2.2.3) to
find the list of top KPIs.
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Figure 3.14: Example of the front-end user input

3.2.2.2 KPI net

The KPI net is in fact a relational mySQL database. The architectural design
of the database is given in figure 3.15. The remainder of this section discusses
the different tables and their columns.

The KPI table contains, as the name states, all KPIs of the application. In
total 46 KPIs were found in different sources (see chapter 2). Appendix B lists
these KPIs. As mentioned above an API endpoint in the back-end allows for
future additions of KPIs. The direction column in this table defines which is
the best value for the KPI. This can either be ”min”, ”max”, ”optimal value”,
or ”undefined”. The KPI machine downtime for example will have ”min”
as direction while the KPI signal strength will have ”max” as value for the
direction column. The unit column describes which unit the KPI is measured
in. Examples of units are percentages, absolute value, time. . . These last two
columns are mainly for clarification reasons for the end users.

The requirements table contains all requirements for the application. The
requirements, together with their description, that are now in the database
were found in different sources [55–60] that describe best practices and most
common use cases for these non functional requirements. Each requirement is
linked to each KPI in the requirement correlation table. A correlation score
tells the application how important a non-functional requirement is for a KPI.
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Figure 3.15: The EER model of the KPI net

The table contains an entry for each requirement-KPI pair. The correlation
for the requirement ”availability” and the KPI ”% of device up” for example
will be very high whereas the correlation between that same requirement and
the KPI ”Air quality” will be rather low. This table is the backbone table for
the correlation matrix (section 3.2.2.3). Section 3.2.2.3 gives more info about
how the correlation scores between KPIs and requirements are determined.

The data source table makes sure all data sources in the database are de-
fined unambiguous. The link to capture which KPIs uses which data sources
is defined in the kpi datasource table.

The KPI net contains all data the suggestion tool uses in order to suggest
useful KPIs to the end user. These suggestions are based on the input the
tool receives from this end user.

3.2.2.3 Correlation matrix

The correlation matrix is a very important part for the web tool as it trans-
forms the non-functional requirements, received from the user input, into a
score for each KPI. The correlation matrix receives the scores for each non-
functional requirement as given by the user on the input page. Although the
correlation matrix is implemented in the back-end of the application, it is
given as a separate component in figure 3.12 due to its importance for the
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suggestion tool. Listing 3.1 gives an example input the correlation matrix
receives from the front-end. This input is in JSON format and is converted
in the back-end by using the data stored in the KPI net mentioned above.

Listing 3.1: example of json input for correlation matrix

1 [

2 {
3 "id": 1,

4 "name": "Security",

5 "description": "Security is freedom from, or

resilience against, potential harm caused by

others. Beneficiaries (technically referents)

of security may be of persons and social

groups, objects and institutions, ecosystems

or any other entity or phenomenon vulnerable

to unwanted change .",

6 "score": 2

7 },
8 {
9 "id": 2,

10 "name": "availability",

11 "description": "The degree to which a system is

in a specified operable and committable state

at the start of a mission, when the mission

is called for at an unknown, i.e. a random,

time. Simply put, availability is the

proportion of time a system is in a

functioning condition",

12 "score": 3

13 },
14 ...

15 {
16 "id": 15,

17 "name": "Throughput",

18 "description": "In general terms, throughput is

the rate of production or the rate at which

something is processed .",

19 "score": 5

20 }
21 ]
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Algorithm 1 gives the algorithm used to transform the input into KPI scores
in pseudo code. In the algorithm the variable ”kdao” is responsible for re-
trieving all KPIs from the KPI net. The ”cdao” object retrieves all cor-
relation coefficients stored in the KPI net. The correlation coefficients are
determined using the following methodology: at the creation of the tool,
every KPI-requirement pair received a score on 5 indicating how important
the requirement is for this KPI. These scores are based on a large amount
of different sources. We call this score the importance score. These impor-
tance scores are then normalized so every KPI-requirement pair received a
score between 0 and 1. This normalization is done to make sure the relative
weight for the KPI-requirement is used. This way KPIs with less obvious
requirements can also be selected. The formula to calculate the correlation
coefficient between requirement r and KPI k as described above is given in
formula 3.1.

ρ(k, r) =
score(k, r)

∑
δ∈Ω score(k, δ)

(3.1)

With

ρ(k, r) : Correlation coefficient between KPI k and requirement r
score(k, r) : The importance between KPI k and requirement r
Ω : The collection of all requirements

As each requirement is rated on a Likert scale from 1 to 7 (see section
3.2.2.1), the score for each KPI is then calculated according to formula 3.2.

Sk =
∑

r∈Ω

C(r, k) ∗ I(r) (3.2)

With

Sk : The score for KPI k
Ω : The collection of all requirements stored in the KPI net
C(r, k) : The correlation score between requirement r and KPI k
I(r) : The input score for requirement r as rated by the user

Figure 3.16 gives a conceptual overview of how the requirement scores,
as provided by the end user, are transformed into the output which contains
a score for every KPI. After this transformation, all KPIs have a score based
on the non-functional requirements. The back-end of the application will
now search for other suggested KPIs based on the KPIs that have the best
scores.
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Algorithm 1 Code responsible for the transformation of the user input in
the correlation matrix
1: List<KPI> kpis = kdao.findAll()
2: for KPI k in kpis do
3: score = 0
4: for Requirement r in requirements do
5: RequirementCorrelation rc = this.cdao.findByReqAndKpi(r,k)
6: if rc != null then
7: score += rc.getCorrelationScore * r.getScore()
8: end if
9: end for
10: # Normalize score for every KPI
11: score /= requirements.totalScore(k)
12: k.setScore(score)
13: end for
14: return kpis

Figure 3.16: Conceptual overview of the working of the correlation matrix
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3.2.2.4 Back-end of the application

The back-end of the KPI suggestion tool is a stand-alone application. This
way other applications can use the stored KPIs in the future. An Application
Programming Interface (API) provides the stored KPIs together with the dis-
tances between these KPIs. As mentioned before, the back-end also provides
endpoints to expand the application. This allows to add KPIs, requirements
and data sources for future improvements. The back-end is written in java
code. It has a three layer architecture (see figure 3.17). The first layer is the
data layer. This layer enables communication with the KPI net and converts
the data stored in the KPI net to java entities. These entities are represented
in the models package in the class diagram (displayed in figure 3.18). Every
entity inherits from the AbstractEntity class in order to make an abstrac-
tion of entities for future improvements and extensions. The data layer also
contains a Data Access Object (DAO) package which provides an abstract in-
terface to connect with the database itself. The back-end uses the hibernate
framework as ORM library [61] to make connection to the database. This
framework allows us to make an abstraction of the complex queries and focus
on the data. This way the classes in the DAO package are really simple. The
logical layer is responsible for the suggestion of the KPIs. This layer is the
engine of the application. It takes user input from the presentation layer and
processes this input with the data from the data layer. In the logical layer, all
code concerning KPI suggestion is present. It includes the services to process
the requirement scores (based on the correlation matrix), get the list of top
suggested KPIs as will be explained in the next section and calculates the
alternative suggested KPIs (also explained in the next section). The logical
layer also provides a comparator which allows to rank the KPIs according to
their score. The presentation layer, at last, offers the API endpoints to the
front-end application. These endpoints enable the communication between
the back-end and the front-end application. They also allow users to add
and alter KPIs, non-functional requirements and data sources for the KPI
net. The data in the KPI net can be exposed to third parties using this
presentation layer. The presentation layer also includes the data transfer
objects (DTOs). These DTOs are simple representations of the entities in
the data layer. Mappings between these DTOs and the entities enable the
opportunity to modify the data layer without the need to change the pre-
sentation layer and thus the front-end application. The DTOs also provide
abstraction of the back-end entities for the front-end. This three layer ar-
chitecture offers the possibility to separate the logic to predict KPIs from
the database objects and the API. It also allows to change the structure of
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Figure 3.17: The three layer architecture for the back-end application

the KPI net without the need to rewrite all code concerning the KPI sugges-
tions. A schematic overview of the three layer architecture is given in figure
3.17, while figure 3.18 shows the class diagram for the back-end. Notice the
different fields and methods are neglected in this figure as its main purpose
is to give a better understanding of the architecture and dependencies of the
back-end application and not to perfectly visualize the UML diagram of the
application.
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Figure 3.18: Class diagram for the back-end
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3.2.2.5 KPI calculation algorithm

As mentioned above, all code concerning the calculation of the suggested
KPIs is contained in the logical layer of the back-end application.Algorithm
2 contains the pseudo code for the selection of the top KPIs. The algorithm
makes use of a treeSet which is an ordered set. The kpiList variable is
the output of the correlation matrix as described in section 3.2.2.3. The
score a KPI can achieve lies between 1 and 7. This because the correlation
matrix only contains correlation coefficients between 0 and 1 and because
the maximal input score for a non-functional requirement is 7. Taking the
product of these two values can thus only generate values scores between
1 and 7. A threshold with a value of 3.8 is defined based on several test
iterations in order for a KPI to be selected as a top KPI for the application.
Notice this threshold is based on the current content of the KPI net. It is
possible a better threshold value can be found in future improvements of the
algorithm. If no KPI achieves the threshold value, the algorithm returns the
’x’ KPIs with the best score (x being a fixed variable, in this case 3). Other
KPIs are suggested based on this selected top KPIs. Algorithm 3 provides
the pseudo code for the suggestion of KPIs. The algorithm checks how many
data sources are needed for each KPI to add them to the application. The
cost to add a KPI to the application is then represented by this amount
of data sources divided by the score of the KPI for the application. Both
components are multiplied with a weight coefficient. This weight coefficient
enables the possibility to give more importance to the cost of the KPI (in
this case, the number of common data sources). The cost gets divided by the
score to prevent the tool from suggesting KPIs that have a lot of data sources
in common but are no use for the application. To prevent the suggestion of
KPIs that need no extra data sources (cost= 0) but are totally irrelevant,
formula 3.3 is used in the algorithm.

Rc(k) =
a(1 + c(k))

b ∗ Sk
(3.3)

With

Rc(k) : The relative cost of KPI k
c(k) : The cost of the KPI
Sk : The score of KPI k based on the requirements
a : The weight coefficient for the cost
b : The weight coefficient for the score
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Notice the formula uses 1 + c(KPI) in the numerator in order to always
retrieve a cost larger than zero. If this would not be used, total irrelevant
KPIs that do not need extra data sources will always be suggested (as they
would always have a relative cost of 0). Based on the relative cost described in
equation 3.3, the KPIs with the lowest relative cost are selected as suggested
KPIs.

The algorithm finally returns the list of top KPIs first selected by using the
correlation matrix, together with the suggested KPIs with the lowest relative
cost. The amount of suggested results is a fixed variable. No threshold was
used here as the relative score of the KPIs can be very different depending
on the application and top KPIs. A Normalization factor could be used to
keep the score between 0 and 1 but by testing the application, we noticed
even then the relative score is very dependent on the application. Listing
3.2 gives an example of the output the algorithm returns to the front-end
application.

Listing 3.2: example of json output sent to the front-end

1 {
2 top : [

3 {
4 "id": 9,

5 "name": "Machine downtime",

6 "description": "Security is freedom from, or

resilience against, potential harm

caused by others. Beneficiaries (

technically referents) of security may be

of persons and social groups, objects

and institutions, ecosystems or any other

entity or phenomenon vulnerable to u",

7 "score": 4.17,

8 "rel_cost": 0,

9 "selected": false,

10 "data_sources_id": [8,11,13]

11 },
12 {
13 "id": 16,

14 "name": "Active users",

15 "description": "Number of users that are

using the application at the moment",

16 "score": 3.98,
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17 "rel_cost": 0,

18 "selected": false,

19 "data_sources_id": [6]

20 },
21 ...

22 ],

23 suggested: [

24 {
25 "id": 7,

26 "name": "Signal Strength",

27 "description": "received signal strength

indicator is a measurement of the power

present in a received radio signal .",

28 "score": 2.87,

29 "rel_cost": 0.34843,

30 "selected": false,

31 "data_sources_id": [6]

32 },
33 {
34 "id": 31,

35 "name": "% of devices up",

36 "description": "The fraction of devices

compared to all devices that are actually

up and running",

37 "score": 1.71,

38 "rel_cost": 0.58479,

39 "selected": false,

40 "data_sources_id": [8]

41 },
42 ...

43 ]

44 }

3.2.2.6 User output frontend

Listing 3.2 gives an example of the JSON code the front-end takes as input to
display the results of the KPI suggestion tool. 3.19 shows a screenshot of this
front-end output. The end user sees all suggested KPIs and can select which
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Algorithm 2 Pseudocode for retrieving the top KPIs based on the user’s
non-functional requirement input
1: x = 3
2: Set<KPI> ts = new TreeSet<>(kpiList)
3: Set<KPI> result =new TreeSet<>()
4: KPI best = ts.pollLast()
5: result.add(best)
6: # If no KPI has a higher score then the min. treshold, return fixed

number of best KPIs
7: if best.getScore() <= treshold then
8: for i = 0; i < x; i++ do
9: result.add(ts.pollLast())
10: end for
11: else
12: while ts.last().getScore() > treshold do
13: result.add(ts.pollLast())
14: end while
15: end if
16: return result

Algorithm 3 Pseudocode for the KPI suggestion algorithm

1: List<DataSource> sources = new ArrayList<>()
2: Set<KPI> ts = new TreeSet<>()
3: ts.useComparator(KPIRelativeScoreComparator)
4: for KPI k in selected do
5: sources.addAll(k.getSources())
6: end for
7: for KPI k in kpiList do
8: cost = 0
9: for DataSource ds in k.getSources() do
10: if ds not in sources then
11: cost++
12: end if
13: end for
14: float relativeScore = a*(1+cost)/b*k.getScore();
15: k.setRelativeScore(relativeScore);
16: ts.add(k);
17: end for
18: return ts
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Figure 3.19: A screenshot of the front-end output the user gets to see

KPIs he wants to implement. Based on this selection, the back-end can run
the algorithm again. This to obtain more suggested KPIs. The algorithm
now uses the KPIs the user selected as the list of top KPIs (as described in
section 2.4.2) as new starting point. The user repeats this process until he is
satisfied with the final result.

3.2.3 Future improvements

The KPI suggestion tool as described above is a first implementation. Al-
though this implementation gives results that make sense and are useful as
described in the validation chapter (chapter 4), some improvements can be
made to give even better results in the future. The improvements have not
been implemented because of a lack of data sources. It turned out in the
construction of this work that, although many companies were very enthusi-
astic about the creation of a KPI suggestion tool, not many were willing to
give the KPIs they were using for their applications. This section handles the
improvements that should be made when more data about KPIs is available.
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3.2.3.1 KPI clustering

A first improvement is touched shortly in section 3.2.1. The first idea was
to use data sheets generated by KPIs to define the distance between KPIs.
XingYu et al. [5], proposes such an approach for cellular networks. Based on
data analysis on his results, he noticed his approach can very well divide data
into clusters and each cluster can effectively reflect the relationship between
two KPIs. His methodology consists of two main steps (displayed in figure
3.20):

1. Define correlations between each two KPIs: The first step of
XingYu’s approach is to use the data sets of each two KPIs and define a
correlation coefficient between them based on a Pearson product moment
correlation coefficient (eq. 3.4).

ρX,Y =
COV (X, Y )

σXσY
=
E[(X − µX)(Y − µy)]

σXσY
(3.4)

With

ρX,Y : Correlation coefficient between KPI X and Y
COV (X, Y ) : Covariance between datasets of X and Y
σX : Standard deviation of dataset X
σY : Standard deviation of dataset Y

2. Define clusters based on Clustering by Fast Search and Find
Density Peaks (CFSFDP) algorithm: This algorithm uses the correla-
tion score between each two KPIs and defines clusters based on the density
peaks in the data. The algorithm uses a variable k which defines the num-
ber of clusters to be found. In the basic version of the algorithm, this k is
predefined and fixed but with some adjustments proposed by Mehmood et
al. [62] the algorithm is able to determine the best k dynamically based on
the data.

With the above described method, the clustering can add an extra cost
to the KPIs aside from the data sources they have in common. Equation 3.3
can then be adapted to the formula given in equation 3.5. Although a lot
of research has been done about clustering KPIs, this improvement is not
implemented in the KPI suggestion tool due to a lack of datasets.

Rc(k) =
a(1 + c(k)) + b(δ(k))

c ∗ Sk
(3.5)
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Figure 3.20: The two step method of XingYu [5] to cluster KPIs
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Figure 3.21: Methodology for the KPI suggestion tool with clustering

With

Rc(k) : The relative cost of KPI k
c(k) : The data source cost of KPI k
Sk : The score of KPI k based on the requirements
δ(KPI) : The distance function for KPI k
a : The weight coefficient for the cost
b : The weight coefficient for the distance function
c : The weight coefficient for the score

In the above equation the distance cost δ(k) is the sum of the correlation
coefficients (as described in equation 3.4) between KPI k and each KPI from
the top suggested KPIs list

Figure 3.21 gives an overview of the different parts of the KPI suggestion
tool with clustering.
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3.2.3.2 KPI expansion

The KPI net contains 46 KPIs at the moment. Although this is a good
first start, the application will always benefit from the addition of new KPIs
(provided the correlation scores between this KPI and the requirements make
sense). The application provides an API endpoint for this purpose. To add
a KPI one needs to provide the name of the KPI, a description, the needed
data sources and the scores for each requirement of this KPI. Appendix D
shows how KPIs can be added to the KPI net. In addition to this, the
importance scores to determine the correlation coefficient between the KPIs
(see section 3.2.2.3) require a review. It must be stated that, although a lot
of these importance scores are based on literature, they still have been filled
in as interpreted by the author of this work.

3.2.3.3 Machine Learning approach to improve correlations

The correlation scores between KPIs and requirements as described in section
3.2.2.3 are now based on literature. In the future it would be beneficial to
provide some sort of learning system that changes these correlations based
on selected KPIs by the end user. The importance score (see section 3.2.2.3)
could for example be increased every time a KPI gets selected by the end
user. Such an implementation needs profound research to make sure the
scores don’t change too drastically based on a single user’s choice of KPIs
and can be reset when needed. Equation 3.6 provides a first suggestion on
how selected KPIs can affect the importance score, and thus the correlation
coefficient, once the KPI is selected by the user in the final iteration:

ρ(k, r)+ =
I(r)

7
(3.6)

With

I(r) : The input score for requirement r as rated by the user
ρ(k, r) : Correlation coefficient between KPI k and Requirement r

We divide by 7 because each requirement is rated on a 1 to 7 scale by
the user. This way the importance score will increase by 1 at most. The
correlation coefficient is still calculated using equation 3.1.
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Figure 3.21 displays this machine learning approach by the arrow running
from the Spring boot API to the KPI net.

3.3 Combining both methodologies

This section describes how both the KPI suggestion tool and the incremental
cost models described above can be combined and complement each other.
Figure 3.22 gives a schematic overview of how organizations should use both
methodologies together.

First of all organizations must provide the non-functional requirements
for the application they want to create. The KPI suggestion tool suggests
the most useful KPIs for this application based on this input. The user can
iterate over the outcome of the tool as described in section 3.2.2.6 till he is
satisfied with the suggested KPIs.

Once the organization knows which KPIs he may need, he can now use the
incremental cost model to make an estimate about the cost for the addition
of each KPI. The incremental cost model provides a tool for organizations
to compare the cost for the addition of the KPI now and in the future. This
way they can decide to implement the KPI in development phase. This is
recommended if the use of the KPI seems very likely or if the incremental
cost of missing the KPI seems very large. If the use of the KPI seems not that
likely and the incremental cost seems rather low, an organization may decide
to not implement the KPI in the development phase of their application.
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Figure 3.22: Combining both the KPI suggestion tool and incremental cost
analysis
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Chapter 4
Validation

In this chapter, a validation of the above described methodology is done.
This validation has the purpose of evaluating how well the web tool performs
for new IoT-applications. The application used for validation is the Sundo
use case, further described in section 4.1. Section 4.2 provides the strategy
used to validate the Sundo use case against the methodology for the KPI
suggestion tool. The last section of this chapter focuses on the results of this
validation strategy.

4.1 The Sundo use case

Sundo is a startup company located in Ghent. Driven by the fact that skin
cancer is one of the fastest growing cancers, the persuasion of Sundo is that
more active prevention against the dangers of the sun should be taken. People
typically protect themselves against the sun when going to the beach or on
a vacation, but when walking outside in the summer for casual occasions,
this protection is forgotten a lot. This while the danger of burning and thus
damaging your skin is still present. Creating awareness of this problem is a
first step in this prevention process. However, nowadays not much actions
follow on this awareness. For this, Sundo wants to bring sunscreen to the
people.

61
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By providing smart sunscreen dispensers to cities, Sundo tries to get the
inhabitants to protect themselves better and more often against exposure
to harmful sunbeams. Accommodated with sun information like the actual
UV-index and temperature, these dispensers offer inhabitants the possibility
to shield themselves against the sun. With a user friendly online dashboard,
the city can monitor the consumption of each dispenser in a simple way. In
addition, automatic notifications about dispensers that are almost empty of-
fer the possibility to plan optimised routes to refill these empty dispensers.
At the moment Sundo has an agreement with 3 cities to launch their appli-
cation. An agreement with two sunscreen suppliers to deliver the sunscreen
for their dispensers is also obtained.The launch of the Sundo application is
planned in April this year (2020).

As their application is a new IoT application that is never created before,
it is an ideal use case to validate the methodology against. Sundo has now
reached the prototyping phase in the creation cycle of an IoT application.
For this, it may be useful to discover new KPIs before the application is
launched and before the scaling phase is reached.

4.2 Validation Strategy

In order to test the KPI suggestion tool, the importance of every non-
functional requirement as described in section 3.2.2.1 was estimated for the
Sundo use case. With this input, the comparison between the KPIs sug-
gested by the KPI suggestion tool and the KPIs already thought of by the
Sundo company is made. Two main questions must be solved to validate the
methodology described in chapter 3:

1. How well does the KPI suggestion tool perform as a validation tool to
check the currently determined KPIs by the organization?

2. How well does the KPI suggestion tool perform as a suggestion tool to
predict new, useful KPIs for an IoT application?

As the first of these two questions provides a nice-to-have, a positive out-
come on the second question really means an added value for organizations.
Notice that, due to the fact that the incremental costs of adding a KPI to
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an application can be very high (especially after the scaling phase), the KPI
suggestion tool can be of great value even if only one extra KPI is found.

The KPI suggestion tool processes the provided input and displays the
suggested KPIs as described in section 2.4.2. Based on these suggested KPIs
and the list of KPIs already thought of, the following questions were asked:

1. How many KPIs did the company think of before using the KPI sug-
gestion tool?

2. How many KPIs did the web tool suggest that are not on the list with
KPIs the company already thought of?

3. How many KPIs are not in the suggestion of the web tool that are on
the list of KPIs the company thought of?

4. How many of the KPIs from the previous question are very use case
specific (In this case: are KPIs related to the sun or to sunscreen)?

5. How many KPIs described in question one seem useful for your appli-
cation?

To be a solid validation tool for KPIs an organization already thought of,
the score for question three should be rather low compared to the score on
question one.
To be a solid suggestion tool for new KPIs for an IoT application, the score
for question three and five should be high.
Question four is mainly used to filter out the KPIs that are very use case
specific and, for this, very hard to predict for the KPI suggestion tool. Notice
organizations are much more capable of finding the use case specific KPIs
for their application. This because these KPIs are linked to the functional
requirements in a lot of cases.

The validation strategy consists of two main parts. The first part only
uses the outcome of the KPI selection tool without further iterations on the
selected KPIs. This to validate how well the tool performs the first iteration
and to check whether or not it is useful to perform multiple iterations on the
calculation of multiple KPIs.

The second validation step then, does use these iterations on the output
until the end user is completely satisfied with the found KPIs. This validation
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step shows whether or not it is useful to keep the iteration in the output of the
suggestion tool in future improvements. It also allows to gain first insights in
which direction the iteration step of the suggestion tool should be improved.
In order to verify these assumptions, the following questions were answered
on top of the ones asked primarily:

1. How much iterations did you need until the suggested KPIs were com-
plete to your feeling or until you had the feeling no more useful KPIs
would be found by the application?

2. How many more KPIs did you found that seem useful to your applica-
tion after the first iteration?

The following section now describes the outcome of this validation strategy
for the Sundo use case.

4.3 Validation Outcome

Table 4.1 gives the scores of the non-functional requirements used as input
for the KPI suggestion tool (see appendix B for the description of the non-
functional requirements). These are the scores rated on the likert scale from
1 to 7 for each non-functional requirement. Based on this input the follow-
ing KPIs were given by the application in the first validation step (without
iterating on the selected KPIs):

• Mean Time Between Failure (MTBF)

• % of devices up

• Average Incident Response Time

• First Response Time

• Energy Consumption

• Signal to Noise Ratio (SNR)

• Mean Time To Repair (MTRR)
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Requirement Score
Security 1

Availability 6
Channel Capacity 3

Backup 3
Data Integrity 4

Disaster Recovery 1
Durability 5

Fault Tolerance 3
Maintainability 7

Performance 5
Response Time 6

Stability 3
Scalability 3
Robustness 6
Throughput 6

Table 4.1: The input scores for the non-functional requirements as given by
the Sundo organization

• Average Product Waste

The Sundo organization listed 11 KPIs before using the application. 7 of
them were very use case specific (average temperature, average UV-index
etc.). The four KPIs that were more general were:

1. received signal strength indicator (RSSI)

2. Signal to Noise Ratio (SNR)

3. Remaining battery life

4. Number of users/day

Three of these four KPIs were not found in the suggested KPIs from the
webtool. This raises the assumption that the tool needs extra expansion in
order to perform as an reliable validation tool for KPIs of organizations. No-
tice that, although the energy consumption proposed by the KPI suggestion
tool is not the same as the remaining battery life described by Sundo, they
resemble a lot.
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The following KPIs were marked as worth investigating for future use:

• % of devices up

• Mean Time Between Failure (MTBF)

• Average Incident Response Time

• Energy Consumption

• Average Product Waste

This proofs the suggestion tool is certainly capable of suggesting new KPIs
that could be useful for an organization in development phase. As stated in
section 4.2, the added value of only finding one KPI can be very large due
to the incremental costs missing a KPI entails.

Based on the above selection new iterations were done, leading to the
following selected KPIs when finished:

• Mean Time Between Failure (MTBF)

• % of devices up

• Average Incident Response Time

• Energy Consumption

• Signal to Noise Ratio (SNR)

• Mean Time To Repair (MTRR)

• Average Product Waste

• Received Signal Strength Indicator (RSSI)

In total 3 iterations were done. Because no new useful KPIs were selected
after iteration 3, the above was considered as the final result. The only
useful KPI that was added compared to first iteration was the Received
Signal Strength Indicator (RSSI). The reason the KPI suggestion did not
find much new KPIs after the iteration phase is twofold:
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1. The KPI suggestion tool did a pretty good job in the first phase which
makes it harder to find new useful KPIs based on the selected KPIs

2. The KPI net does not contain enough specific data sources in order
to really determine the distance between KPIs, this reinforces the fact
that a KPI net expansion is needed as future improvement.

For future improvements the KPI net should be expanded with more KPIs
and data sources as already mentioned in section 3.2.3. This way more
iterations will help to suggest more low hanging fruit KPIs based on the
selection made by an organization.

The KPIs found in this validation step can certainly create an added value
for the Sundo organization. However, these results need the remark that the
Sundo organization did not do a deep investigation into the KPIs of their
application beforehand. This way it is much easier for the tool to predict
new, useful KPIs as the list of already determined KPIs for the Sundo use
case was rather limited. This said, the following conclusion can be drawn
from the validation strategy:

The Sundo use case shows the KPI suggestion tool is able to find and
suggest useful KPIs for an organization. This validation also shows the tool
should not be used as the only source to determine all KPIs for an organiza-
tion. After all, the tool is (at the moment) unable to give 100% guarantees
all KPIs for an organization’s application will be found. Yet, the tool can
be used by an organization as starting point to predict useful KPIs or it can
serve as an expansion to the KPIs already defined by the organization. Even
when only one useful KPI is discovered by the use of this KPI suggestion
tool, this can infer a big economic saving for an organization. For this, it
is save to say the tool offers an added value for organizations that will only
grow when expanding the KPI net and implementing future improvements.
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Chapter 5
Conclusion

Internet of Things (IoT) emerged as a concept about 20 years ago and is
now making headlines all around the world. More and more applications are
becoming smart applications connected to the internet. The data provided
by these applications is stored on servers or in the cloud and provided to
the end user in order to monitor an application using their smartphone or
laptop.

Key Performance Indicators (KPIs) are a well known concept in the busi-
ness world. They help an organization to measure its most important targets
and indicate how well the organization scores on these targets. Based on these
KPIs they can take actions to improve the value of their company.

As these KPIs are dynamic, an organization does not always know all
KPIs on startup. Adding and re-evaluating these KPIs allows organizations
to keep improving, innovating and set new targets.

In IoT applications the measurement of these KPIs is mostly provided by
sensors in the IoT application. When this is the case it is much harder to
adjust the set of KPIs as this includes adding new sensors to the application.
Especially when the application is deployed on a large scale this entails a
huge economic effort for the company. This work starts by listing the cost
components for an IoT application. Based on these cost models, the required
effort to add a new KPI to the IoT application is estimated. The cost models
differentiate between the added cost and the incremental cost. Adding a KPI
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to the application will bring an extra cost in some cost components. When
this cost is the same as the cost of implementing the KPI in development
phase, this is called the added cost. This cost is inevitable and is specific
to the fact that KPIs are dynamic. It is however possible that costs, due to
adding KPIs to the application, could have been avoided by implementing
these KPIs in development phase. This is called the incremental cost and
allows a company to get an impression which effort it takes to add a new
KPI to the application after this development phase.

The cost models presented in this work are based on a 4 layer architecture
for IoT applications. The first layer is the perception layer which includes the
data sources needed for the application. This perception layer communicates
with the platform layer through a communication layer. The platform layer
is, among other tasks, responsible for preprocessing and storing the data it
receives from the perception layer. At last the application layer presents the
stored data to the end user in such a way it creates a useful application.
The cost models presented in this work should be used together with the
companies knowledge about the application. The models give a first impres-
sion on which cost components will create an incremental cost when KPIs
are appended to an application after the development phase. The models
don’t say much about how large this cost will be as this depends on multiple
variables. The number of devices, cost of the needed data sources, and type
of application are only some variable factors that determine the magnitude
of the cost for adding new KPIs. The first part of the methodology of this
work, has as main purpose to offer the end user an overview of which types
of costs he will face when missing a KPI in development phase.

As the first part of the methodology gives an overview of the different cost
components for adding KPIs to an IoT-application, the second part provides
the end user with a KPI suggestion tool to predict which KPIs are useful
for his application. The tool starts with the non-functional requirements of
the application and processes this input together with a prestored KPI net
to enrich the user with useful KPIs.

When combined, the incremental cost analysis and KPI suggestion tool
offer a great added value for companies. The suggestion tool provides an
additional resource to help companies determine KPIs they may not have
thought of before. This way the chance of missing KPIs in development
phase decreases for a company. When the suggestion tool suggests KPIs but
the company is not sure whether or not this KPI will be useful in the future,
it can use the incremental cost analysis to compare the cost of adding the
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KPI in the development phase of the application to the cost of adding the
KPI in a later phase.

The Sundo use case is used to validate the proposed methodology. Sundo
is a startup company providing smart sunscreen dispensers to cities. This
to offer inhabitants the possibility to protect against harm of the sun. As
Sundo creates a new IoT application it is a perfect use case to validate the
methodology against. Using the KPI suggestion tool, 8 new KPIs will be
investigated, and possibly implemented in the Sundo application. This shows
the KPI suggestion tool can help to improve the definition and determination
of useful KPIs for on organization.

This work gives a first methodology and suggestion tool to predict useful
KPIs. In future work the KPI net should be expanded and more literature
and investigation should be done into how KPIs correlate with the non-
functional requirements for an application. When more datasets of KPIs
can be found, the distances between the KPIs in the KPI net could be ex-
panded. At the moment, the only distance between KPIs is their common
data sources. This metric could be combined with the correlation found
between KPI-pairs by investigating data sets from two KPIs.

A feedback loop, that allows the suggestion tool to learn and improve
from previous selected KPIs could be a first step to predict KPIs using a
machine learning approach.

At the moment the cost models described in this work allow to identify
the different cost components for an IoT application. Next to this, the in-
cremental cost analysis describes which components are affected when a KPI
is added to the application. The models however contain no clue about how
large this cost is and how the phase in which the application situates itself
affects this cost. Future work should list these costs and supply an impression
of the magnitude of the cost for each component described in the models.
This magnitude should be examined for every phase for the creation cycle of
an IoT application.
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Chapter 6
Future improvements

The most important future improvements for both the incremental cost mod-
els and the KPI suggestion tool are given in chapter 3 in detail. This chapter
summarises these improvements. The first section handles the future im-
provements for the incremental cost models while the second section provides
the improvements for the KPI suggestion tool.

6.1 Incremental cost analysis

The cost models, described in section 3.1, list the main incremental and added
cost components for adding KPIs to an IoT application. The models indicate
the different cost components of an IoT application and illustrate which costs
to expect when adding KPIs to these applications. The models however, do
not give any clues about how large these costs are or which components are
the largest cost drivers. With the current model, an organization can identify
these costs but needs to estimate the size of this cost for itself. As a first
improvement the different costs and their magnitude should be listed and
described. Future work should also investigate which parameters cause the
increase in (incremental) costs for every cost component. Some first ideas of
these parameters are given below.

A first parameter is the scale on which the application is already deployed.
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It is clear that it will be harder to implement a new KPI when there are 1000
devices of the application compared to when only one device is deployed.
A second parameter is the geographical distribution of the application. Adding
a sensor to an IoT application that is distributed very locally (for example
only in one company) will be much easier than adding this sensor to an ap-
plication that is distributed worldwide.
A third parameter could be the value of the application and the fact whether
or not the application needs to be redeployed to implement a new KPI. When
the implementation of a new KPI causes the application to be redeployed,
this means that the application can not be used for some time. When the
application creates very high value products, this can lead to a very high loss
in production.

The above are only some suggestions of parameters that should be looked
into. In future work, a profound investigation into all parameters that affect
the incremental costs, is needed. This way organizations can, instead of only
identifying the cost based on these models, also predict very precise how
much missing a KPI for an IoT application will cost and which are the main
cost drivers.

A last suggested improvement is to identify the magnitude of the incre-
mental costs for every phase of the creation process for IoT applications. the
costs for adding KPIs to an IoT application will not have the same magni-
tude in every phase of this process. So will the cost for adding a KPI in the
prototyping phase normally be much lower compared to the cost of adding
the same KPI after the scaling phase. Future work could give an idea about
what the magnitude of these costs are for every phase.

6.2 KPI suggestion tool

As seen in the validation chapter 4 the KPI suggestion tool is capable of
suggesting useful KPIs for an IoT application. Yet, to validate KPIs for an
organization it is (at the moment) not 100% reliable. In order to improve
the suggestion capabilities and to increase the reliability of the tool as a
validation tool, following improvements are suggested:

A first improvement would be to expand the KPI net. The KPI net
contains 46 KPIs at the moment. Although this is a good first start, the
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application will always benefit from the addition of new KPIs (provided the
correlation scores between this KPI and the requirements make sense). The
application provides an API endpoint for this purpose.

A second improvement is to use other cost functions than only the com-
mon data sources between KPIs. Clustering of the KPIs allows to define a
cost penalty between each pair of KPIs. A first suggestion for this cluster-
ing is described in chapter 3. Data sets, generated by the measurement of
KPIs, could be used to determine the correlation coefficient which counts as
the distance between two KPIs. The Clustering by Fast Search and Find
Density Peaks (CFSFDP) algorithm can now determine clusters in the KPI
net. Based on these clusters an extra cost could be taken into account in the
suggestion of low hanging fruit KPIs.

A last improvement given in chapter 3 is to make use of a machine learn-
ing approach to improve the KPI suggestion on previous inputs. It would be
beneficial to provide some sort of learning system that changes the correla-
tions between KPIs and requirements based on selected KPIs by the end user.
The importance score (see section 3.2.2.3) could for example be increased ev-
ery time a KPI gets selected by the end user. Such an implementation needs
profound research to make sure the scores do not change too drastically based
on a single user’s choice of KPIs and can be reset when needed.
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Appendix A
Questionnaire for IoT Companies

Below, the questionnaire used for the interviews with several IoT companies
is given. This questionnaire was used in the literature phase in order to gain
insights in the following questions:

• Is the research question relevant?

• Could a KPI suggestion tool create an added value for companies?

• How are KPIs determined nowadays in organizations?

• Why are KPIs measured in organizations?

• What is important when selecting KPIs?

• Which domains are very important to develop KPIs for?

• Discover domain specific KPIs
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Date: ……………………………………………

Methodology for KPI-selection and
incremental cost analysis for Iot-

applications in development phase

Name Company:_______________________________________________________________

Do you see an added value in the research question of this master dissertation?

How are KPIs estimated in development phase in your organization? Do you have best practices/ 
strict rules in order to determine KPIs for a new application?

Did you ever encounter problems facing KPIs that could have been avoided by using a KPI 
selection tool like the one proposed in this work? If yes, which ones?



Date: ……………………………………………

What are the most important problems you’re trying to tackle/ the most important goals you try to 
obtain when developing an IoT application (Think of minimizing system downtime, increasing 
coverage of the application...)

Which KPIs would you describe as being very common/important when developing an Iot 
application? (Both domain related as in general)

Can you give a correlation between different domains and KPIs in general at first sight?



Date: ……………………………………………

If the scope of this master dissertation is not feasible and it turns out to be impossible to develop a 
webtool for all possible Iot applications, which domains seem most useful/achievable to develop the
webtool for?

Useful:

Achievable:

Extra suggestions:



Appendix B
Content of the KPI net

B.1 Non-functional requirements

Table B.1: Overview of the non-functional requirements
present in the KPI net

requirement name requirement description

Security Security is freedom from, or resilience against, po-
tential harm caused by others. Beneficiaries (tech-
nically referents) of security may be of persons and
social groups, objects and institutions, ecosystems
or any other entity or phenomenon vulnerable to
unwanted change

availability The degree to which a system is in a specified op-
erable and committable state at the start of a mis-
sion, when the mission is called for at an unknown,
i.e. a random, time. Simply put, availability is the
proportion of time a system is in a functioning con-
dition
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Channel capacity Channel capacity, in electrical engineering, com-
puter science, and information theory, is the tight
upper bound on the rate at which information
can be reliably transmitted over a communication
channel.

backup backup, or data backup is a copy of computer data
taken and stored elsewhere so that it may be used
to restore the original after a data loss event.

data integrity Data integrity is the maintenance of, and the as-
surance of the accuracy and consistency of data
over its entire life-cycle,[1] and is a critical aspect
to the design, implementation and usage of any
system which stores, processes, or retrieves data.

disaster recovery Disaster Recovery involves a set of policies, tools
and procedures to enable the recovery or continua-
tion of vital technology infrastructure and systems
following a natural or human-induced disaster.

durability Durability is the ability of a physical product to re-
main functional, without requiring excessive main-
tenance or repair, when faced with the challenges
of normal operation over its design lifetime.

fault tolerance Fault tolerance is the property that enables a sys-
tem to continue operating properly in the event of
the failure of (or one or more faults within) some of
its components. If its operating quality decreases
at all, the decrease is proportional to the sever

maintainability maintainability is the ease with which a product
can be maintained in order to: correct defects
or their cause,repair or replace faulty or worn-out
components without having to replace still work-
ing parts, prevent unexpected working condition,
meet new re

performance performance is the amount of useful work accom-
plished by a computer system.

response time response time is the time a system or functional
unit takes to react to a given input.

stability Stability is the degree in which the system must
not alter over time.
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scalabity Scalability is the property of a system to handle
a growing amount of work by adding resources to
the system.

Robustness robustness is the ability of a system to cope with
errors during execution and cope with erroneous
input.

Throughput In general terms, throughput is the rate of produc-
tion or the rate at which something is processed.

B.2 KPIs

Table B.2: Overview of the KPIs present in the KPI net

Name Description Direction Unit

Mean Time
Between
Failure
(MTBF)

The predicted elapsed time be-
tween inherent failures

max. time

Mean Time
To Repair
(MTTR)

Represents the average time re-
quired to repair a failed compo-
nent or device.

min. time

Availability Availability is a function of the
total service time, the mean
time between failure (MTBF),
and the mean time to repair
(MTTR).

max percentage

Package loss percentage of packets transmit-
ted over the network that did
not reach their intended destina-
tion. A 0 percent package loss
indicates no packets were lost in
transmission.

min percentage

Downtime The formula derives the percent-
age of the time service is avail-
able. The inverse is the amount
of downtime.

min percentage
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Signal
strength

received signal strength indicator
(RSSI) is a measurement of the
power present in a received radio
signal.

max DB-
microvolts

Average
incident
response
time

The average amount of time (e.g.
in minutes) between the detec-
tion of an incident and the first
action taken to repair the inci-
dent.

min time

Unplanned
availability

Percentage of outage (unavail-
ability) due to incidents in the
IT environment, relative to the
service hours.

min percentage

Uptime The time during which the sys-
tem is operational. Often defined
in terms of percentages

max percentage

Energy con-
sumption

Evaluate the consumption per
sector over time, so as to iden-
tify a trend of consumption and
be able to predict future needs
more accurately.

min Energy in
kWh

Power cuts
& average
duration

measures the number of time
your facility suffers a power out-
age, and how much time it rep-
resents at the end of the month.

min Events

Energy
production
costs

The production costs represent
the net present value of the unit-
cost of electricity of a certain en-
ergy source

min Minutes

number of
detected
network
attacks

Represents the number of both
succesful and unsuccesful attacks
in a certain time period

min days

Risk level
matrix

Risk Level Matrix – Mearures
various risks and their likelihood.

min score

Emission
factor

The emission factor for the ma-
chine

max Kg-CO2

Air pollution max score
Air quality The quality of the air in the room
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% of devices
up

measure how well you’re actu-
ally delivering that service, and
you have to drive up this quality-
metric in order to scale

percentage

Active users Number of users that are using
the application at the moment

optimal
val.

users

Activated
users

How many users are signed up
for the application

optimal
val.

users

response
time

the time a system or functional
unit takes to react to a given in-
put.

min time

First re-
sponse time

number of minutes, hours, or
days between when a customer
submits a support ticket and
when a customer support repre-
sentative provides an initial re-
sponse

min time

Average
number of
incidents per
device

Average number of incidents per
device

max percentage

efficiency Number of produced units per
fixed time period

optimal
val.

units

Average
Product
Waste

Amount of the end product the
application that goes to waste.

min percentage

% of repeat
incidents

Percentage of incidents that can
be classified as a repeat incident,
relative to all reported incidents
within the measurement period.
A repeat incident is an incident
that has already occured (mul-
tiple times) in the measurement
period.

min percentage

Average
time to
procure

Average time to procure an item.
Time lag between request for
procurement and signing of con-
tract or purchase.

min time
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% of avail-
ability SLAs
met

Percentage of availability Service
Level Agreements (SLAs) met.

max percentage

% of avail-
ability SLAs
not met

Percentage of response-time
SLAs not.

min. percentage

% of unau-
thorized
changes

number of unauthorized imple-
mented changes relative to all
implemented changes within a
given time period. An unau-
thorized change can be detected
through consolidation of the
CMDB. A change in infrastruc-
ture for which there is not a
change registered is considered
as unauthorized.

min percentage

Subscriptions’
NET
Growth

how many new subscriptions am
I adding NET on a monthly ba-
sis, otherwise known as ‘Net New
Adds’, as all IoT

max. users

Average
Revenue
Per Unit
(ARPU)

the average revenue you’ve al-
ready received from your cus-
tomers per application unit.

max. revenue

Life Time
Value

The revenues attributed to the
entire relationship with a cus-
tomer

max. revenue

Planned
Busy Time

The planned time during which
a machine is busy.

min time

Planned op-
eration time
(POT)

The scheduled time during which
a machine can be utilized.

max time

Planned run
time per
item (PRI)

The planned time to produce one
piece or part.

min time

Planned unit
setup time
(PUST)

The planned time for a machine
to setup for an order.

min time



B.2. KPIS 95

Actual unit
process-
ing time
(AUPT)

The time necessary for produc-
tion and setup on a machine for
an order.

min time

Actual pro-
duction time
(APT)

The actual time in which the ma-
chine is producing for an order,
which only includes the value-
adding functions.

min time

Actual unit
idle time
(AUIT)

The actual time when the ma-
chine is not executing order pro-
duction even if it is available.
This can also be referred to as
actual unit delay time (ADET)

min time

Processed
quantity
(PQ)

The quantity that a work unit
has processed

optimal
value

absolute
value

Failure event
(FE)

The count over a specified time
interval of the terminations of
the ability for a machine to per-
form a required operation.

min failures

Blocking
time (BLT)

The idle time of an equipment
during events that parts cannot
go downstream.

min time

Starving
time (STT)

The idle time of an equipment
during events that parts cannot
arrive from upstream.

min time

Throughput
rate (TR)

The process performance indica-
tor in terms of produced good
part quantity of an order

max percentage

Production
process ratio
(PR)

The efficiency of production
when considering the actual unit
setup time, delay time, trans-
portation time, and queuing
time.

max percentage
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Appendix C
Deployment of the application

This appendix describes how the KPI suggestion tool can be downloaded and
run locally. The tool is located on a github repository and can be run using
docker.

C.1 Download the application

The application is located on a github repository. This repository needs to
be cloned. On windows and mac OSX, users can use sourcetree as GIT GUI
(https://www.sourcetreeapp.com/). On a linux machine users can use the
git clone command. The URL to the webtool is given below:

https://github.ugent.be/vidsmet/kpiSuggestionTool.git

When using sourcetree follow the steps listed below as in figure C.1:

1. Click on the ”Clone/New” button.

2. Click on ”Clone Repository”.

3. Fill in the remote repository URL (https://github.ugent.be/vidsmet/kpiSuggestionTool.git)
and all other details.
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Figure C.1: Steps to download the application from github

4. Click ”Clone”.

When using linux, open a new terminal, create an empty destination folder
and use the following command:

git clone https://github.ugent.be/vidsmet/kpiSuggestionTool.git

The source files should now be in the newly created folder.

C.2 Install docker

Docker provides a way to run applications securely isolated in a container,
packaged with all its dependencies and libraries. To run the application, an
installation of docker is needed first. The installation manual can be found
on the official docker page for every operating system:

• Microsoft Windows 10 Professional of Enterprise 64 bit:
https://docs.docker.com/docker-for-windows/install/

• Apple MacOS Sierra 10.12 or higher:
https://docs.docker.com/docker-for-mac/install/

• Linux CentOS:
https://docs.docker.com/install/linux/docker-ce/centos/
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• Linux Debian:
https://docs.docker.com/install/linux/docker-ce/debian/

• Linux Fedora:
https://docs.docker.com/install/linux/docker-ce/fedora/

• Linux Ubuntu:
https://docs.docker.com/install/linux/docker-ce/ubuntu/

For linux users Docker Compose also needs to be installed (on windows
and mac this is included in the Docker installation). Docker compose al-
lows to bundle several docker images which is needed to run the front-end
and back-end application simultaneous. Docker compose can be installed on
Linux using the manual from the official docker compose installation page
(https://docs.docker.com/compose/install/)

C.3 Deploy the application

Once Docker and Docker compose are installed the application can be de-
ployed. For this open a new terminal and navigate to the local git folder on
your computer. Starting from this folder, complete the following steps:

1. Navigate to the docker folder (cd ./docker on Linux)

2. Execute the docker-compose build command. This will build the Docker
image for the application

3. Execute the docker-compose up command. This will launch the Docker
image build in the previous step

4. The application is now available at localhost:8080. Use your browser
to navigate to localhost:8080

The application is now fully deployed and can be used to suggest KPIs for
your application
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Appendix D
Expanding the KPI net

As mentioned in the methodology chapter. The KPI net should be expanded
as future improvement. The front-end offers end users the possibility to
add KPIs, data sources and non-functional requirements. Figure D.1 gives a
printscreen of what these pages look like. To add a KPI the user needs to go
to

https://localhost:8080/addKPI/

and fill in all details the application needs. This includes the name and
description of the KPI, the scores for the correlation between the new KPI
and the non-functional requirements and the data sources needed to measure
the KPI.
Using the same method non-functional requirements can be added (as given
in figure D.2) using the following url:

https://localhost:8080/addRequirement/.

For this the user needs to score all KPIs that are currently in the KPI
net for the back-end to recalculate the correlations.
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Figure D.1: Printscreen of the add KPI page
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Figure D.2: Printscreen of the add Requirements page
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